
Numerical Techniques Lab

MCA- 109

SELF LEARNING MATERIAL

DIRECTORATE

OF DISTANCE EDUCATION

SWAMI VIVEKANAND SUBHARTI UNIVERSITY

MEERUT – 250 005,

UTTAR PRADESH (INDIA)

SLM Module Developed By :

Author:

Reviewed by :

Assessed by:

Study Material Assessment Committee, as per the SVSU ordinance No. VI (2)

Copyright © Gayatri Sales

DISCLAIMER

No part of this publication which is material protected by this copyright notice may be

reproduced or transmitted or utilized or stored in any form or by any means now known or

hereinafter invented, electronic, digital or mechanical, including photocopying, scanning,

recording or by any information storage or retrieval system, without prior permission from the

publisher.

Information contained in this book has been published by Directorate of Distance Education and

has been obtained by its authors from sources be lived to be reliable and are correct to the best

of their knowledge. However, the publisher and its author shall in no event be liable for any

errors, omissions or damages arising out of use of this information and specially disclaim and

implied warranties or merchantability or fitness for any particular use.

Published by: Gayatri Sales

Typeset at: Micron Computers Printed at: Gayatri Sales, Meerut.

NUMERICAL TECHNIQUES LAB

Write programs in C

• To implement floating point arithmetic operations i.e., addition, subtraction,

multiplication and division.

• To deduce errors involved in polynomial interpolation. Algebraic and trancedental

equations using Bisection, Newton Raphson,

Iterative, method of false position, rate of conversions of roots in tabular form for each of

these methods.

• To implement formulae by Bessels, Newton, Stirling, Langranges etc.

• To implement method of least square curve fitting.

• Implement numerical differentiation.

• Implement numerical integration using Simpson's 1/3 and 3/8 rules, trapezoidal rule.

• To show frequency chart, regression analysis, Linear square fit, and polynomial fit.

Unit-I

Floating point Arithmetic

Representation of floating point numbers

1. To convert the floating point into decimal, we have 3 elements in a 32-bit floating
point representation:

 i) Sign

 ii) Exponent

 iii) Mantissa

 Sign bit is the first bit of the binary representation. ‗1‘ implies negative number
and ‗0‘ implies positive number.

Example: 11000001110100000000000000000000 This is negative number.

 Exponent is decided by the next 8 bits of binary representation. 127 is the
unique number for 32 bit floating point representation. It is known as bias. It is
determined by 2k-1 -1 where ‗k‘ is the number of bits in exponent field.
There are 3 exponent bits in 8-bit representation and 8 exponent bits in 32-bit
representation.

Thus

bias = 3 for 8 bit conversion (23-1 -1 = 4-1 = 3)
bias = 127 for 32 bit conversion. (28-1 -1 = 128-1 = 127)

Example: 01000001110100000000000000000000
10000011 = (131)10
131-127 = 4
Hence the exponent of 2 will be 4 i.e. 24 = 16.

 Mantissa is calculated from the remaining 23 bits of the binary representation. It
consists of ‗1‘ and a fractional part which is determined by:
Example:
01000001110100000000000000000000

The fractional part of mantissa is given by:

1*(1/2) + 0*(1/4) + 1*(1/8) + 0*(1/16) +……… = 0.625

Thus the mantissa will be 1 + 0.625 = 1.625

The decimal number hence given as: Sign*Exponent*Mantissa = (-
1)0*(16)*(1.625) = 26

2. To convert the decimal into floating point, we have 3 elements in a 32-bit floating
point representation:

 i) Sign (MSB)

 ii) Exponent (8 bits after MSB)

 iii) Mantissa (Remaining 23 bits)

 Sign bit is the first bit of the binary representation. ‗1‘ implies negative number

and ‗0‘ implies positive number.

Example: To convert -17 into 32-bit floating point representation Sign bit = 1

 Exponent is decided by the nearest smaller or equal to 2n number. For 17, 16 is
the nearest 2n. Hence the exponent of 2 will be 4 since 24 = 16. 127 is the
unique number for 32 bit floating point representation. It is known as bias. It is
determined by 2k-1 -1 where ‗k‘ is the number of bits in exponent field.
Thus bias = 127 for 32 bit. (28-1 -1 = 128-1 = 127)

Now, 127 + 4 = 131 i.e. 10000011 in binary representation.

 Mantissa: 17 in binary = 10001.
Move the binary point so that there is only one bit from the left. Adjust the
exponent of 2 so that the value does not change. This is normalizing the number.
1.0001 x 24. Now, consider the fractional part and represented as 23 bits by
adding zeros.
00010000000000000000000

Operations

An operation, in mathematics and computer science, is an action that is carried out

to accomplish a given task. There are five basic types of computer operations:

Inputting, processing, outputting, storing, and controlling.

Although even basic computers are capable of sophisticated

processing, processors themselves are only capable of performing simple

mathematical operations. CPUs perform very complex tasks by executing billions of

individual operations per second.

When we think of computer operations, we‘re usually thinking of those involved in

processing. The arithmetic-logic unit (ALU) in the processor performs arithmetic and

logic operations on the operands according to instructions that specify each step that

must be taken to make the software do something.

https://whatis.techtarget.com/definition/processor
https://whatis.techtarget.com/definition/processor
https://whatis.techtarget.com/definition/arithmetic-logic-unit-ALU
https://whatis.techtarget.com/definition/operand
https://whatis.techtarget.com/definition/instruction

The arithmetic operations are addition, subtraction, multiplication, and

division. There are sixteen possible logic (or symbolic) operators used to perform

tasks such as comparing two operands and detecting where bits don‘t

match. Boolean operators, which work with true/false values, include AND, OR, NOT

(or AND NOT) and NEAR. Relational operators, used for comparisons, include the

equal sign (=), the less-than symbol (<) and the greater-than symbol (>).

The ALU usually has direct input and output access to the processor controller, main

memory RAM and input/output devices. Inputs and outputs flow through the

system bus. The input consists of an instruction word that contains an operation

code, one or more operands and sometimes a format code.

 Normalization

Normalization is the process of reorganizing data in a database so that it meets two
basic requirements:

1. There is no redundancy of data, all data is stored in only one place.

2. Data dependencies are logical all related data items are stored together.

Normalization is important for many reasons, but chiefly because it allows databases
to take up as little disk space as possible, resulting in increased performance.

Normalization is also known as data normalization.

The first goal during data normalization is to detect and remove all duplicate data by
logically grouping data redundancies together. Whenever a piece of data is
dependent on another, the two should be stored in proximity within that data set.

By getting rid of all anomalies and organizing unstructured data into a structured
form, normalization greatly improves the usability of a data set. Data can be
visualized more easily, insights could be extracted more efficiently, and information
can be updated more quickly. As redundancies are merged together, the risk of
errors and duplicates further making data even more disorganized is reduced. On
top of all that, a normalized database takes less space, getting rid of many disk
space problems, and increasing its overall performance significantly.

The three main types of normalization are listed below. Note: "NF" refers to "normal
form."

First normal form (1NF)

Tables in 1NF must adhere to some rules:

 Each cell must contain only a single (atomic) value.

https://whatis.techtarget.com/definition/operator
https://whatis.techtarget.com/definition/Boolean
https://searchstorage.techtarget.com/definition/RAM-random-access-memory
https://searchstorage.techtarget.com/definition/bus
https://whatis.techtarget.com/definition/word

 Every column in the table must be uniquely named.

 All values in a column must pertain to the same domain.

Second normal form (2NF)

Tables in 2NF must be in 1NF and not have any partial dependency (e.g. every non-
prime attribute must be dependent on the table‘s primary key).

Third normal form (3NF)

Tables in 3NF must be in 2NF and have no transitive functional dependencies on the
primary key.

The following two NFs also exist but are rarely used:

Boyce-Codd Normal Form (BCNF)

A higher version of the 3NF, the Boyce-Codd Normal Form is used to address the
anomalies which might result if one more than one candidate key exists. Also known
as 3.5 Normal Form, the BCNF must be in 3NF and in all functional dependencies (
X → Y), X should be a super key.

Fourth Normal Form (4NF)

For a table to in 4NF, it must be in BCNF and not have a multi-valued dependency.

The first three NFs were derived in the early 1970s by the father of the relational
data model, E.F. Codd. Almost all of today's relational database engines use his
rules.

Some relational database engines do not strictly meet the criteria for all rules of
normalization. An example is the multivalued fields feature introduced by Microsoft in
the Access 2007 database application. There has been heated debate in database
circles as to whether such features now disqualify such applications from being true
relational database management systems.

Pitfalls of floating point representation

There are posts on representation of floating point format. The objective of this article
is to provide a brief introduction to floating point format.

The following description explains terminology and primary details of IEEE 754 binary
floating point representation. The discussion confines to single and double precision
formats.

Usually, a real number in binary will be represented in the following format,

ImIm-1…I2I1I0.F1F2…FnFn-1
Where Im and Fn will be either 0 or 1 of integer and fraction parts respectively.

A finite number can also represented by four integers components, a sign (s), a base
(b), a significand (m), and an exponent (e). Then the numerical value of the number is
evaluated as

(-1)s x m x be ________ Where m < |b|
Depending on base and the number of bits used to encode various components,
the IEEE 754 standard defines five basic formats. Among the five formats, the
binary32 and the binary64 formats are single precision and double precision formats
respectively in which the base is 2.

Table – 1 Precision Representation

Precision Base Sign Exponent Significand

Single precision 2 1 8 23+1

Double precision 2 1 11 52+1

Single Precision Format:

As mentioned in Table 1 the single precision format has 23 bits for significand (1
represents implied bit, details below), 8 bits for exponent and 1 bit for sign.

For example, the rational number 9÷2 can be converted to single precision float format
as following,

9(10) ÷ 2(10) = 4.5(10) = 100.1(2)

The result said to be normalized, if it is represented with leading 1 bit, i.e. 1.001(2) x
22. (Similarly when the number 0.000000001101(2) x 23 is normalized, it appears as
1.101(2) x 2-6). Omitting this implied 1 on left extreme gives us the mantissa of float
number. A normalized number provides more accuracy than corresponding de-
normalized number. The implied most significant bit can be used to represent even
more accurate significand (23 + 1 = 24 bits) which is
called subnormal representation. The floating point numbers are to be represented in
normalized form.

The subnormal numbers fall into the category of de-normalized numbers. The
subnormal representation slightly reduces the exponent range and can‘t be normalized
since that would result in an exponent which doesn‘t fit in the field. Subnormal
numbers are less accurate, i.e. they have less room for nonzero bits in the fraction
field, than normalized numbers. Indeed, the accuracy drops as the size of the

http://en.wikipedia.org/wiki/IEEE_754-2008

subnormal number decreases. However, the subnormal representation is useful in
filing gaps of floating point scale near zero.

In other words, the above result can be written as (-1)0 x 1.001(2) x 22 which yields the
integer components as s = 0, b = 2, significand (m) = 1.001, mantissa = 001 and e = 2.
The corresponding single precision floating number can be represented in binary as
shown below,

Where the exponent field is supposed to be 2, yet encoded as 129 (127+2)
called biased exponent. The exponent field is in plain binary format which also
represents negative exponents with an encoding (like sign magnitude, 1‘s
complement, 2‘s complement, etc.). The biased exponent is used for the
representation of negative exponents. The biased exponent has advantages over
other negative representations in performing bitwise comparing of two floating point
numbers for equality.

A bias of (2n-1 – 1), where n is # of bits used in exponent, is added to the exponent (e)
to get biased exponent (E). So, the biased exponent (E) of single precision number
can be obtained as

E = e + 127

The range of exponent in single precision format is -128 to +127. Other values are
used for special symbols.

Note: When we unpack a floating point number the exponent obtained is the biased
exponent. Subtracting 127 from the biased exponent we can extract unbiased
exponent.

Double Precision Format:

As mentioned in Table – 1 the double precision format has 52 bits for significand (1
represents implied bit), 11 bits for exponent and 1 bit for sign. All other definitions are
same for double precision format, except for the size of various components.

Precision:

The smallest change that can be represented in floating point representation is called
as precision. The fractional part of a single precision normalized number has exactly
23 bits of resolution, (24 bits with the implied bit). This corresponds to log(10) (2

23) =
6.924 = 7 (the characteristic of logarithm) decimal digits of accuracy. Similarly, in case
of double precision numbers the precision is log(10) (2

52) = 15.654 = 16 decimal digits.

Accuracy:

Accuracy in floating point representation is governed by number of significand bits,
whereas range is limited by exponent. Not all real numbers can exactly be represented
in floating point format. For any numberwhich is not floating point number, there are
two options for floating point approximation, say, the closest floating point number less
than x as x_ and the closest floating point number greater than x as x+.
A rounding operation is performed on number of significant bits in the mantissa field
based on the selected mode. The round down mode causes x set to x_, the round
up mode causes x set to x+, the round towards zero mode causes x is either x_ or
x+ whichever is between zero and. The round to nearest mode sets x to x_ or x+
whichever is nearest to x. Usually round to nearest is most used mode. The
closeness of floating point representation to the actual value is called as accuracy.
Special Bit Patterns:

The standard defines few special floating point bit patterns. Zero can‘t have most
significant 1 bit, hence can‘t be normalized. The hidden bit representation requires a
special technique for storing zero. We will have two different bit patterns +0 and -0 for
the same numerical value zero. For single precision floating point representation,
these patterns are given below,

0 00000000 00000000000000000000000 = +0

1 00000000 00000000000000000000000 = -0

Similarly, the standard represents two different bit patters for +INF and -INF. The
same are given below,

0 11111111 00000000000000000000000 = +INF

1 11111111 00000000000000000000000 = -INF

All of these special numbers, as well as other special numbers (below) are subnormal
numbers, represented through the use of a special bit pattern in the exponent field.
This slightly reduces the exponent range, but this is quite acceptable since the range
is so large.

An attempt to compute expressions like 0 x INF, 0 ÷ INF, etc. make no mathematical
sense. The standard calls the result of such expressions as Not a Number (NaN). Any
subsequent expression with NaN yields NaN. The representation of NaN has non-zero
significand and all 1s in the exponent field. These are shown below for single precision
format (x is don‘t care bits),

x 11111111 1m0000000000000000000000

Where m can be 0 or 1. This gives us two different representations of NaN.
0 11111111 110000000000000000000000 _____________ Signaling NaN (SNaN)

0 11111111 100000000000000000000000 _____________Quiet NaN (QNaN)

Usually QNaN and SNaN are used for error handling. QNaN do not raise any
exceptions as they propagate through most operations. Whereas SNaN are which
when consumed by most operations will raise an invalid exception.

Overflow and Underflow:

Overflow is said to occur when the true result of an arithmetic operation is finite but
larger in magnitude than the largest floating point number which can be stored using
the given precision. Underflow is said to occur when the true result of an arithmetic
operation is smaller in magnitude (infinitesimal) than the smallest normalized floating
point number which can be stored. Overflow can‘t be ignored in calculations whereas
underflow can effectively be replaced by zero.

Endianness:

The IEEE 754 standard defines a binary floating point format. The architecture details
are left to the hardware manufacturers. The storage order of individual bytes in binary
floating point numbers varies from architecture to architecture.

Errors in numerical computation

Many engineering problems are too time consuming to solve or may not be able to
be solved analytically. In these situations, numerical methods are usually employed.
Numerical methods are techniques designed to solve a problem using numerical
approximations. An example of an application of numerical methods is trying to
determine the velocity of a falling object. If you know the exact function that
determines the position of your object, then you could potentially differentiate the
function to obtain an expression for the velocity. More often, you will use a machine
to record readings of times and positions that you can then use to numerically solve
for velocity:

where f is your function, t is the time of the reading, and h is the distance to the next
time step.
Because your answer is an approximation of the analytical solution, there is an
inherent error between the approximated answer and the exact solution. Errors can
result prior to computation in the form of measurement errors or assumptions in
modeling. The focus of this blog post will be on understanding two types of errors
that can occur during computation: roundoff errors and truncation errors.

Roundoff Error

Roundoff errors occur because computers have a limited ability to represent
numbers. For example, π has infinite digits, but due to precision limitations, only 16
digits may be stored in MATLAB. While this roundoff error may seem insignificant, if
your process involves multiple iterations that are dependent on one another, these
small errors may accumulate over time and result in a significant deviation from the
expected value. Furthermore, if a manipulation involves adding a large and small
number, the effect of the smaller number may be lost if rounding is utilized. Thus, it is
advised to sum numbers of similar magnitudes first so that smaller numbers are not
―lost‖ in the calculation.

One interesting example that we covered in my Engineering Computation class, that
can be used to illustrate this point, involves the quadratic formula. The quadratic
formula is represented as follows:

Using a = 0.2, b = – 47.91, c = 6 and if we carry out rounding to two decimal places
at every intermediate step:

The error between our approximations and true values can be found as follows:

As can be seen, the smaller root has a larger error associated with it because
deviations will be more apparent with smaller numbers than larger numbers.

If you have the insight to see that your computation will involve operations with
numbers of differing magnitudes, the equations can sometimes be cleverly
manipulated to reduce roundoff error. In our example, if the quadratic formula
equation is rationalized, the resulting absolute error is much smaller because fewer
operations are required and numbers of similar magnitudes are being multiplied and
added together:

Truncation Error

Truncation errors are introduced when exact mathematical formulas are represented
by approximations. An effective way to understand truncation error is through a
Taylor Series approximation. Let‘s say that we want to approximate some function,
f(x) at the point xi+1, which is some distance, h, away from the basepoint xi, whose
true value is shown in black in Figure 1. The Taylor series approximation starts with
a single zero order term and as additional terms are added to the series, the
approximation begins to approach the true value. However, an infinite number of
terms would be needed to reach this true value.

Figure 1: Graphical representation of a Taylor Series approximation (Chapra, 2017)

The Taylor Series can be written as follows:

where Rn is a remainder term used to account for all of the terms that were not
included in the series and is therefore a representation of the truncation error. The
remainder term is generally expressed as Rn=O(hn+1) which shows that truncation
error is proportional to the step size, h, raised to the n+1 where n is the number of
terms included in the expansion. It is clear that as the step size decreases, so does
the truncation error.
The Tradeoff in Errors

The total error of an approximation is the summation of roundoff error and truncation
error. As seen from the previous sections, truncation error decreases as step size
decreases. However, when step size decreases, this usually results in the necessity
for more precise computations which consequently results in an increase in roundoff
error. Therefore, the errors are in direct conflict with one another: as we decrease
one, the other increases.

However, the optimal step size to minimize error can be determined. Using an
iterative method of trying different step sizes and recording the error between the
approximation and the true value, the following graph shown in Figure 2 will result.
The minimum of the curve corresponds to the minimum error achievable and
corresponds to the optimal step size. Any error to the right of this point (larger step
sizes) is primarily due to truncation error and the increase in error to the left of this
point corresponds to where roundoff error begins to dominate. While this graph
is specific to a certain function and type of approximation, the general rule and shape
will still hold for other cases.

Figure 2: Plot of Error vs. Step Size (Chapra, 2017)

Hopefully this blog post was helpful to increase awareness of the types of errors that
you may come across when using numerical methods! Internalize these golden rules
to help avoid loss of significance:

 Avoid subtracting two nearly equal numbers

 If your equation has large and small numbers, work with smaller numbers first

 Consider rearranging your equation so that numbers of a similar magnitude
are being used in an operation

UNIT-II

Iterative Methods

Zeros of a single transcendental equation and zeros of polynomial using

Bisection Method,

Bisection method is the simplest among all the numerical schemes to solve the

transcendental equations. This scheme is based on the intermediate value theorem

for continuous functions .

Consider a transcendental equation f (x) = 0 which has a zero in the interval [a,b]
and f (a) * f (b) < 0. Bisection scheme computes the zero, say c, by repeatedly
halving the interval [a,b]. That is, starting with

c = (a+b) / 2

the interval [a,b] is replaced either with [c,b] or with [a,c] depending on the sign of f
(a) * f (c) . This process is continued until the zero is obtained. Since the zero is
obtained numerically the value of c may not exactly match with all the decimal places
of the analytical solution of f (x) = 0 in the interval [a,b]. Hence any one of the
following mechanisms can be used to stop the bisection iterations :

interval or the maximum error after N iterations in this case is less than | b-a | / 2N.

 testing the condition | ci - c i-1| (where i are the iteration number) less than
some tolerance limit, say epsilon, fixed a priori.

i) | less than some tolerance limit alpha again
fixed a priori.

Algorithm - Bisection Scheme

Given a function f (x) continuous on an interval [a,b] and f (a) * f (b)
< 0
Do
 c = (a+b)/2
 if f (a) * f (c) < 0 then b = c
 else a = c
while (none of the convergence criteria C1, C2 or C3 is satisfied)

https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/bisection.html
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/bisection.html

Numerical Example :

Find a root of f (x) = 3x + sin(x) - exp(x) = 0.

The graph of this equation is given in the figure.

Its clear from the graph that there are two roots,
one lies between 0 and 0.5 and the other lies
between 1.5 and 2.0.

Consider the function f (x) in the interval [0,
0.5] since f (0) * f (0.5) is less than zero.

Then the bisection iterations are given by

Iteration

No.
a b c f(a) * f(c)

1 0 0.5 0.25 0.287 (+ve)

2 0.25 0.5 0.393 -0.015 (-ve)

3 0.65 0.393 0.34 9.69 E-3 (+ve)

4 0.34 0.393 0.367 -7.81 E-4 (-ve)

5 0.34 0.367 0.354 8.9 E-4 (+ve)

6 0.354 0.367 0.3605 -3.1 E-6 (-ve)

So one of the roots of 3x + sin(x) - exp(x) = 0 is approximately 0.3605.

Worked out problems

 Exapmple 1 Find a root of cos(x) - x * exp(x) = 0 Solution

 Exapmple 2 Find a root of x4-x-10 = 0 Solution

 Exapmple 3 Find a root of x-exp(-x) = 0 Solution

 Exapmple 4 Find a root of exp(-x) * (x2-5x+2) + 1= 0 Solution

 Exapmple 5 Find a root of x-sin(x)-(1/2)= 0 Solution

 Exapmple 6 Find a root of exp(-x) = 3log(x) Solution

Problems to workout

https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/example1.html#exp1
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/example2.html#exp2
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/example3.html#exp3
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/example4.html#exp4
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/example5.html#exp5
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/example6.html#exp6
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/example6.html#exercise%20problems

Iteration Method

Considerable attention has been devoted to the study of the fractional calculus

during the past three decades and its numerous applications in the area of physics

and engineering. The applications of fractional calculus used in many fields such as

electrical networks, control theory of dynamical systems, probability and statistics,

electrochemistry, chemical physics, optics, and signal processing can be

successfully modelled by linear or nonlinear fractional differential equations.

So far there have been several fundamental works on the fractional derivative and

fractional differential equations [1–3]. These works are to be considered as an

introduction to the theory of fractional derivative and fractional differential equations

and provide a systematic understanding of the fractional calculus such as the

existence and uniqueness [4, 5]. Recently, many other researchers have paid

attention to existence result of solution of the initial value problem and boundary

problem for fractional differential equations [4–6].

Finding approximate or exact solutions of fractional differential equations is an

important task. Except for a limited number of these equations, we have difficulty in

finding their analytical solutions. Therefore, there have been attempts to develop

new methods for obtaining analytical solutions which reasonably approximate the

exact solutions. Several such techniques have drawn special attention, such as

Adomain‘s decomposition method [7], homotopy perturbation method [8–10],

homotopy analysis method [11, 12], variational iteration method [13–17], Chebyshev

spectral method [18, 19], and new iterative method [20–22]. Among them, the new

iterative method provides an effective procedure for explicit and numerical solutions

of a wide and general class of differential systems representing real physical

problems. The new iterative method is more superior than the other nonlinear

methods, such as the perturbation methods where this method does not depend on

small parameters, such that it can find wide application in nonlinear problems without

linearization or small perturbation.

The motivation of this paper is to extend the application of the new iterative method

proposed by Daftardar-Gejji and Jafari [20–22] to solve linear and nonlinear ordinary

and partial differential equations of fractional order. This motivation is based on the

importance of these equations and their applications in various subjects in physical

branches [10, 11, 14, 23–25].

There are several definitions of a fractional derivative of order [3, 26]. The two most

commonly used definitions are Riemann-Liouville and Caputo. Each definition uses

Riemann-Liouville fractional integration and derivative of whole order. The difference

between the two definitions is in the order of evaluation. Riemann-Liouville fractional

integration of order is defined asThe next two equations define Riemann-Liouville

and Caputo fractional derivatives of order ,  respectively, aswhere ,  .

Caputo fractional derivative first computes an ordinary derivative followed by a

fractional integral to achieve the desired order of fractional derivative. Riemann-

Liouville fractional derivative is computed in the reverse order. Therefore, Caputo

fractional derivative allows traditional initial and boundary conditions to be included in

the formulation of the problem.

From properties of   and ,  it is important to note thatwhere   is Caputo derivative

operator of order ,

2. Basic Idea of New Iterative Method

For the basic idea of the new iterative method, we consider the following general

functional equation [20–22]:where is a nonlinear operator from a Banach

space and   is a known function. We have been looking for a solution of (4) having

the series formThe nonlinear operator can be decomposed asFrom (5) and (6), (4)

is equivalent toWe define the following recurrence relation:Then,If ,  , thenand the

series absolutely and uniformly converges to a solution of (4) [27], which is unique,

in view of the Banach fixed point theorem [28]. The n-term approximate solution of

(4) and (5) is given by

2.1. Convergence of the Method

Now we analyze the convergence of the new iterative method for solving any general

functional equation (4). Let , where is the exact solution, is the approximate

solution, and is the error in the solution of (4); obviously satisfies (4), that is,and the

recurrence relation (8) becomesIf ,  , thenThus as , which proves the convergence of

the new iterative method for solving the general functional equation (4). For more

details, you can see [29].

3. Suitable Algorithm

In this section, we introduce a suitable algorithm for solving nonlinear partial

differential equations using the new iterative method. Consider the following

nonlinear partial differential equation of arbitrary order:where is a nonlinear function

of and (partial derivatives of with respect to and) and is the source function. In

view of the new iterative method, the initial value problem (14a) and (14b) is

equivalent to the integral equationwhere

Remark 1. When the general functional equation (4) is linear, the recurrence relation

(8) can be simplified in the form

Proof. From the properties of integration and by using (8) and (16b), we

haveTherefore, we get the solution of (15) by employing the recurrence relation (8)

or (17).

https://www.hindawi.com/journals/aaa/2013/617010/#EEq4
https://www.hindawi.com/journals/aaa/2013/617010/#EEq5
https://www.hindawi.com/journals/aaa/2013/617010/#EEq6
https://www.hindawi.com/journals/aaa/2013/617010/#EEq4
https://www.hindawi.com/journals/aaa/2013/617010/#EEq4
https://www.hindawi.com/journals/aaa/2013/617010/#EEq4
https://www.hindawi.com/journals/aaa/2013/617010/#EEq5
https://www.hindawi.com/journals/aaa/2013/617010/#EEq4
https://www.hindawi.com/journals/aaa/2013/617010/#EEq4
https://www.hindawi.com/journals/aaa/2013/617010/#EEq4
https://www.hindawi.com/journals/aaa/2013/617010/#EEq8
https://www.hindawi.com/journals/aaa/2013/617010/#EEq4
https://www.hindawi.com/journals/aaa/2013/617010/#EEq11a
https://www.hindawi.com/journals/aaa/2013/617010/#EEq11a
https://www.hindawi.com/journals/aaa/2013/617010/#EEq4
https://www.hindawi.com/journals/aaa/2013/617010/#EEq8
https://www.hindawi.com/journals/aaa/2013/617010/#EEq8
https://www.hindawi.com/journals/aaa/2013/617010/#EEq13a
https://www.hindawi.com/journals/aaa/2013/617010/#EEq12
https://www.hindawi.com/journals/aaa/2013/617010/#EEq8
https://www.hindawi.com/journals/aaa/2013/617010/#EEq14

4. Applications

To illustrate the effectiveness of the proposed method, several test examples are

carried out in this section.

Example 2. In this example, we consider the following initial value problem in the

case of the inhomogeneous Bagely-Torvik equation [23, 24]:where . The exact

solution of this problem is .

By applying the technique described in Sections 2 and 3, the initial value problem

(19) is equivalent to the integral equation

Let . In view of recurrence relation (17), we have the following first

approximations:and so on. In the same manner the rest of components can be

obtained. The 6-term approximate solution for (19) is

Remark 3. In Example 2. we have used the recurrence relation (17). If we used the

recurrence relation (8) in place of (17), we obtain the same result.

In Figure 1, we have plotted the 6-term approximate solution with the corresponding

exact solution for (19). It is remarkable to note that the two solutions are almost

equal.

https://www.hindawi.com/journals/aaa/2013/617010/#basic-idea-of-new-iterative-method
https://www.hindawi.com/journals/aaa/2013/617010/#suitable-algorithm
https://www.hindawi.com/journals/aaa/2013/617010/#EEq15
https://www.hindawi.com/journals/aaa/2013/617010/#EEq14
https://www.hindawi.com/journals/aaa/2013/617010/#EEq15
https://www.hindawi.com/journals/aaa/2013/617010/#ex1
https://www.hindawi.com/journals/aaa/2013/617010/#EEq14
https://www.hindawi.com/journals/aaa/2013/617010/#EEq8
https://www.hindawi.com/journals/aaa/2013/617010/#EEq14
https://www.hindawi.com/journals/aaa/2013/617010/fig1/
https://www.hindawi.com/journals/aaa/2013/617010/#EEq15

Figure 1

Plots of the approximate solution and the exact solution for (19).

Comparing these obtained results with those obtained by new Jacobi operational

matrix in [23, 24], we can confirm the simplicity and accuracy of the given method.

Example 4. Consider the following fractional Riccati equation [10]:The exact solution

when is .

By applying the technique described in Sections 2 and 3, the initial value problem

(23) is equivalent to the integral equation

Let . In view of recurrence relation (8), we have the following first approximations:and

so on. The 4-term approximate solution for (23) is

In Figure 2, we have plotted the 4-term approximate solution for (23) for different

values of with the corresponding exact solution. It is remarkable to note that the

approximate solution,  in case ,  and the exact solution are almost equal (continuous

curve) whenever the approximate solution, in cases , is of high agreement with the

exact solution (dashed and dotted curves, resp.).

Figure 2

Plots of the approximate solution for different values of and the exact solution for

(23).

https://www.hindawi.com/journals/aaa/2013/617010/fig1/
https://www.hindawi.com/journals/aaa/2013/617010/#EEq15
https://www.hindawi.com/journals/aaa/2013/617010/#basic-idea-of-new-iterative-method
https://www.hindawi.com/journals/aaa/2013/617010/#suitable-algorithm
https://www.hindawi.com/journals/aaa/2013/617010/#EEq16
https://www.hindawi.com/journals/aaa/2013/617010/#EEq8
https://www.hindawi.com/journals/aaa/2013/617010/#EEq16
https://www.hindawi.com/journals/aaa/2013/617010/fig2/
https://www.hindawi.com/journals/aaa/2013/617010/#EEq16
https://www.hindawi.com/journals/aaa/2013/617010/fig2/
https://www.hindawi.com/journals/aaa/2013/617010/#EEq16

Comparing the obtained results with those obtained by homotopy analysis method,

in case , in [10], we can confirm the simplicity and accuracy of the given method.

Example 5. Consider the following initial value problem with fractional order [23, 24]:

The exact solution for this problem is .

As in Example 4, the initial value problem (27) is equivalent to the integral equation

Let . In view of recurrence relation (8), we have the following first approximations:and

so on. The 4-term approximate solution and the corresponding exact solution for (27)

are plotted in Figure 3. It is remarkable to note that the two solutions are almost

equal.

Figure 3

Plots of the approximate solution and the exact solution for (27).

https://www.hindawi.com/journals/aaa/2013/617010/#ex2
https://www.hindawi.com/journals/aaa/2013/617010/#EEq17
https://www.hindawi.com/journals/aaa/2013/617010/#EEq8
https://www.hindawi.com/journals/aaa/2013/617010/#EEq17
https://www.hindawi.com/journals/aaa/2013/617010/fig3/
https://www.hindawi.com/journals/aaa/2013/617010/fig3/
https://www.hindawi.com/journals/aaa/2013/617010/#EEq17

Comparing these obtained results with those obtained by new Jacobi operational

matrix in [23, 24], we can confirm the simplicity and accuracy of the given method.

Example 6. Consider the following fractional order wave equation in 2-

dimensional space [14]:

The exact solution for this problem when is

The initial value problem (30) is equivalent to the integral equation

Let .  In view of recurrence relation (17), we have the following first

approximations:and so on. The n-term approximate solution for (30) isIn closed form

this gives:which is the exact solution for the given problem. When , the above n-

term approximate solution for (30) becomesIn closed form, this giveswhich is the

same result obtained by variational iteration method in [14].

Example 7. Consider the following fractional order heat equation in 2-

dimensional space [11]:

The exact solution for this problem when is

The initial value problem (38) is equivalent to the integral equation

Let . In view of recurrence relation (17), we have the following first

approximations:and so on. The n-term approximate solution for (38) isWhen , The n-

term approximate solution for (38) becomesIn closed form, this giveswhich is the

exact solution for the given problem.

The obtained results in this example are the same as these obtained in [11] by the

homotopy perturbation method, in case , but with the simplicity of the given method.

Example 8. In this last example, we consider the following fractional order nonlinear

wave equation [25]:

The exact solution for this problem when is where ,  .

The initial value problem (45) is equivalent to the integral equation

Let . In view of recurrence relation (8), we haveand so on. The 3-term approximate

solution and the corresponding exact solution for (45) are plotted in Figure 4(a), in

case , for  ., in Figure 4(b), in case , for ., and in Figure 4(c), in case . It is remarkable

to note that in the first two figures all the solutions are almost equal.

https://www.hindawi.com/journals/aaa/2013/617010/#EEq18
https://www.hindawi.com/journals/aaa/2013/617010/#EEq14
https://www.hindawi.com/journals/aaa/2013/617010/#EEq18
https://www.hindawi.com/journals/aaa/2013/617010/#EEq18
https://www.hindawi.com/journals/aaa/2013/617010/#EEq19
https://www.hindawi.com/journals/aaa/2013/617010/#EEq14
https://www.hindawi.com/journals/aaa/2013/617010/#EEq19
https://www.hindawi.com/journals/aaa/2013/617010/#EEq19
https://www.hindawi.com/journals/aaa/2013/617010/#EEq20
https://www.hindawi.com/journals/aaa/2013/617010/#EEq8
https://www.hindawi.com/journals/aaa/2013/617010/#EEq20
https://www.hindawi.com/journals/aaa/2013/617010/fig4/#a
https://www.hindawi.com/journals/aaa/2013/617010/fig4/#b
https://www.hindawi.com/journals/aaa/2013/617010/fig4/#c

(a)

(b)

(c)

(a)

(b)

(c)

Figure 4

(a) Plots of the approximate solution for different values of and the exact solution, in

case ; for (45). (b) Plots of the approximate solution for different values of and the

exact solution, in case ; for (45). (c) Plots of the approximate solution, in case for

(45).

Comparing these results with those obtained by the modification homotopy

perturbation method in [25], we can confirm the accuracy and simplicity of the given

method.

5. Conclusion

In this paper, the new iterative method with suitable algorithm is successfully used to

solve linear and nonlinear ordinary and partial differential equations with fractional

order. It is clear that the computations are easy and the solutions agree well with the

corresponding exact solutions and more accurate than the solutions obtained by

other methods. Moreover, the accuracy is high with little computed terms of the

solution which confirm that this method with the given algorithm is a powerful method

for handling fractional differential equations.

Regula-Falsi method

The Regula–Falsi Method is a numerical method for estimating the roots of a
polynomial f(x). A value x replaces the midpoint in the Bisection Method and serves
as the new approximation of a root of f(x). The objective is to make convergence
faster. Assume that f(x) is continuous.

Algorithm for the Regula–Falsi Method: Given a continuous function f(x)

1. Find points a and b such that a < b and f(a) * f(b) < 0.

2. Take the interval [a, b] and determine the next value of x1.

3. If f(x1) = 0 then x1 is an exact root, else if f(x1) * f(b) < 0 then let a = x1, else
if f(a) * f(x1) < 0 then let b = x1.

4. Repeat steps 2 & 3 until f(xi) = 0 or |f(xi)| £ DOA, where DOA stands
for degree of accuracy.

https://www.hindawi.com/journals/aaa/2013/617010/fig4/
https://www.hindawi.com/journals/aaa/2013/617010/#EEq20
https://www.hindawi.com/journals/aaa/2013/617010/#EEq20
https://www.hindawi.com/journals/aaa/2013/617010/#EEq20
http://www2.lv.psu.edu/ojj/courses/cmpsc-201/numerical/roots.html
http://www2.lv.psu.edu/ojj/courses/cmpsc-201/numerical/roots.html
http://www2.lv.psu.edu/ojj/courses/cmpsc-201/numerical/bisection.html

Observe that

EC / BC = E / AB

[x – a] / [b – a] = [f(x) – f(a)] / [f(b) – f(a)]

x – a = [b – a] [0 – f(a)] / [f(b) – f(a)]

x = a + [b – a] [– f(a)] / [f(b) – f(a)]

x = a – [b – a] f(a) / [f(b) – f(a)]

Note that the line segment drawn from f(a) to f(b) is called the interpolation line.

Graphically, if the root is in [a, xi], then the next interpolation line is drawn between (
a, f(a)) and (xi, f(xi)); otherwise, if the root is in [xi, b], then the next interpolation
line is drawn between (xi, f(xi)) and (b, f(b)).

EXAMPLE: Consider f(x) = x3 + 3x – 5, where [a = 1, b = 2] and DOA = 0.001.

i a x b f(a) f(x)
f(b

)

1 1 1.1 2 – 1 – 0.369 9

2 1.1
1.13544668587

896
2 – 0.369

–

0.12979759213093

1

9

3
1.13544668587

896

1.14773797024

856
2

–

0.1297975921309

31

–

0.04486805098132

86

9

4
1.14773797024

856

1.15196570867

269
2

–

0.0448680509813

286

–

0.01541558639099

17

9

5
1.15196570867

269
1.15341577448 2

–

0.0154155863909

917

–

0.00528529852924

82

9

6 1.15341577448
1.15391264384

212
2

–

0.0052852985292

482

–

0.00181077883487

646

9

7
1.15391264384

212

1.15408284038

531
2

–

0.0018107788348

7646

–

0.00062023148574

3084

9

Newton Raphson method

Given a function f(x) on floating number x and an initial guess for root, find root of
function in interval. Here f(x) represents algebraic or transcendental equation.

For simplicity, we have assumed that derivative of function is also provided as input.

Example:

Input: A function of x (for example x3 – x2 + 2),
 derivative function of x (3x2 – 2x for above example)
 and an initial guess x0 = -20
Output: The value of root is : -1.00
 OR any other value close to root.

We have discussed below methods to find root in set 1 and set 2
Set 1: The Bisection Method
Set 2: The Method Of False Position

https://www.geeksforgeeks.org/solution-of-algebraic-and-transcendental-equations-set-1-the-bisection-method/
https://www.geeksforgeeks.org/solution-algebraic-transcendental-equations-set-2-method-false-position/

Comparison with above two methods:

1. In previous methods, we were given an interval. Here we are required an initial
guess value of root.

2. The previous two methods are guaranteed to converge, Newton Rahhson may
not converge in some cases.

3. Newton Raphson method requires derivative. Some functions may be difficult to
impossible to differentiate.

4. For many problems, Newton Raphson method converges faster than the above
two methods.

5. Also, it can identify repeated roots, since it does not look for changes in the sign
of f(x) explicitly

The formula:

Starting from initial guess x1, the Newton Raphson method uses below formula to find
next value of x, i.e., xn+1 from previous value xn.

Algorithm:

Input: initial x, func(x), derivFunc(x)
Output: Root of Func()

1. Compute values of func(x) and derivFunc(x) for given initial x
2. Compute h: h = func(x) / derivFunc(x)
3. While h is greater than allowed error ε

1. h = func(x) / derivFunc(x)
2. x = x – h

Below is the implementation of above algorithm.

C++

filter_none

edit
play_arrow

brightness_4
// C++ program for implementation of Newton Raphson Method for

// solving equations

#include<bits/stdc++.h>

https://media.geeksforgeeks.org/wp-content/cdn-uploads/newtonraphsonformula.png

#define EPSILON 0.001

usingnamespacestd;

// An example function whose solution is determined using

// Bisection Method. The function is x^3 - x^2 + 2

doublefunc(doublex)

{

 returnx*x*x - x*x + 2;

}

// Derivative of the above function which is 3*x^x - 2*x

doublederivFunc(doublex)

{

 return3*x*x - 2*x;

}

// Function to find the root

voidnewtonRaphson(doublex)

{

 doubleh = func(x) / derivFunc(x);

 while(abs(h) >= EPSILON)

 {

 h = func(x)/derivFunc(x);

 // x(i+1) = x(i) - f(x) / f'(x)

 x = x - h;

 }

 cout << "The value of the root is : "<< x;

}

// Driver program to test above

intmain()

{

 doublex0 = -20; // Initial values assumed

 newtonRaphson(x0);

 return0;

}

Java

filter_none

edit
play_arrow
brightness_4
// Java program for implementation of

// Newton Raphson Method for solving

// equations

classGFG {

 staticfinaldoubleEPSILON = 0.001;

 // An example function whose solution

 // is determined using Bisection Method.

 // The function is x^3 - x^2 + 2

 staticdoublefunc(doublex)

 {

 returnx * x * x - x * x + 2;

 }

 // Derivative of the above function

 // which is 3*x^x - 2*x

 staticdoublederivFunc(doublex)

 {

 return3* x * x - 2* x;

 }

 // Function to find the root

 staticvoidnewtonRaphson(doublex)

 {

 doubleh = func(x) / derivFunc(x);

 while(Math.abs(h) >= EPSILON)

 {

 h = func(x) / derivFunc(x);

 // x(i+1) = x(i) - f(x) / f'(x)

 x = x - h;

 }

 System.out.print("The value of the"

 + " root is : "

 + Math.round(x * 100.0) / 100.0);

 }

 // Driver code

 publicstaticvoidmain (String[] args)

 {

 // Initial values assumed

 doublex0 = -20;

 newtonRaphson(x0);

 }

}

// This code is contributed by Anant Agarwal.

Python3

filter_none

edit
play_arrow
brightness_4
Python3 code for implementation of Newton

Raphson Method for solving equations

An example function whose solution

is determined using Bisection Method.

The function is x^3 - x^2 + 2

deffunc(x):

 returnx *x *x -x *x +2

Derivative of the above function

which is 3*x^x - 2*x

defderivFunc(x):

 return3*x *x -2*x

Function to find the root

defnewtonRaphson(x):

 h =func(x) /derivFunc(x)

 whileabs(h) >=0.0001:

 h =func(x)/derivFunc(x)

 # x(i+1) = x(i) - f(x) / f'(x)

 x =x -h

 print("The value of the root is : ",

 "%.4f"%x)

Driver program to test above

x0 =-20# Initial values assumed

newtonRaphson(x0)

This code is contributed by "Sharad_Bhardwaj"

C#

filter_none

edit
play_arrow
brightness_4
// C# program for implementation of

// Newton Raphson Method for solving

// equations

usingSystem;

classGFG {

 staticdoubleEPSILON = 0.001;

 // An example function whose solution

 // is determined using Bisection Method.

 // The function is x^3 - x^2 + 2

 staticdoublefunc(doublex)

 {

 returnx * x * x - x * x + 2;

 }

 // Derivative of the above function

 // which is 3*x^x - 2*x

 staticdoublederivFunc(doublex)

 {

 return3 * x * x - 2 * x;

 }

 // Function to find the root

 staticvoidnewtonRaphson(doublex)

 {

 doubleh = func(x) / derivFunc(x);

 while(Math.Abs(h) >= EPSILON)

 {

 h = func(x) / derivFunc(x);

 // x(i+1) = x(i) - f(x) / f'(x)

 x = x - h;

 }

 Console.Write("The value of the"

 + " root is : "

 + Math.Round(x * 100.0) / 100.0);

 }

 // Driver code

 publicstaticvoidMain ()

 {

 // Initial values assumed

 doublex0 = -20;

 newtonRaphson(x0);

 }

}

// This code is contributed by nitin mittal

PHP

filter_none

edit
play_arrow
brightness_4
<?php

// PHP program for implementation

// of Newton Raphson Method for

// solving equations

$EPSILON= 0.001;

// An example function whose

// solution is determined

// using Bisection Method.

// The function is x^3 - x^2 + 2

functionfunc($x)

{

 return$x* $x* $x-

 $x* $x+ 2;

}

// Derivative of the above

// function which is 3*x^x - 2*x

functionderivFunc($x)

{

 return3 * $x*

 $x- 2 * $x;

}

// Function to

// find the root

functionnewtonRaphson($x)

{

 global$EPSILON;

 $h= func($x) / derivFunc($x);

 while(abs($h) >= $EPSILON)

 {

 $h= func($x) / derivFunc($x);

 // x(i+1) = x(i) -

 // f(x) / f'(x)

 $x= $x- $h;

 }

 echo"The value of the ".

 "root is : ", $x;

}

// Driver Code

$x0= -20; // Initial values assumed

newtonRaphson($x0);

// This code is contributed by ajit

?>

Output:

The value of root is : -1.00

How does this work?
The idea is to draw a line tangent to f(x) at point x1. The point where the tangent line
crosses the x axis should be a better estimate of the root than x1. Call this point x2.

Calculate f(x2), and draw a line tangent at x2.

We know that slope of line from (x1, f(x1)) to (x2, 0) is f'(x1)) where f‘ represents
derivative of f.

f'(x1) = (0 - f(x1)) / (x2 - x1)

f'(x1) * (x2 - x1) = - f(x1)

x2 = x1 - f(x1) / f'(x1)

By finding this point 'x2', we move closer towards the root.
We have to keep on repeating the above step till we get really close to
the root or we find it.

In general,
xn+1 = xn - f(xn) / f'(xn)

Alternate Explanation using Taylor‘s Series:

Let x1 be the initial guess.

We can write x2 as below:
 xn+1 = xn + h ------- (1)
Here h would be a small value that can be positive or negative.

According to Taylor's Series,
ƒ(x) that is infinitely differentiable can be written as below
f(xn+1) = f(xn + h)
 = f(xn) + h*f'(xn) + ((h*h)/2!)*(f''(xn)) + ...

https://en.wikipedia.org/wiki/Taylor_series
https://media.geeksforgeeks.org/wp-content/cdn-uploads/newtonRaphsonMethod.png

Since we are looking for root of function, f(xn+1) = 0

f(xn) + h*f'(xn) + ((h*h)/2!)*(f''(xn)) + ... = 0

Now since h is small, h*h would be very small.
So if we ignore higher order terms, we get

f(xn) + h*f'(xn) = 0

Substituting this value of h = xn+1 - xn from equation (1) we get,
f(xn) + (xn+1 - xn)*f'(xn) = 0

xn+1 = xn - f(xn) / f'(xn)

Notes:

1. We generally used this method to improve the result obtained by either
bisection method or method of false position.

2. Babylonian method for square root is derived from the Newton-Raphson
method.

Secant method

The first two iterations of the secant method. The red curve shows the function f, and

the blue lines are the secants. For this particular case, the secant method will not

converge to the visible root.

In numerical analysis, the secant method is a root-finding algorithm that uses a
succession of roots of secant lines to better approximate a root of a function f. The
secant method can be thought of as a finite-difference approximation of Newton's
method. However, the secant method predates Newton's method by over 3000
years.[1]

https://www.geeksforgeeks.org/square-root-of-a-perfect-square/
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Root-finding_algorithm
https://en.wikipedia.org/wiki/Root_of_a_function
https://en.wikipedia.org/wiki/Secant_line
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Finite-difference
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Secant_method#cite_note-1
https://en.wikipedia.org/wiki/File:Secant_method.svg

The method[edit]

The secant method is defined by the recurrence relation

As can be seen from the recurrence relation, the secant method requires two initial

values, x0 and x1, which should ideally be chosen to lie close to the root.

Derivation of the method[edit]

Starting with initial values x0 and x1, we construct a line through the
points (x0, f(x0)) and (x1, f(x1)), as shown in the picture above. In slope–intercept
form, the equation of this line is

The root of this linear function, that is the value of x such that y = 0 is

We then use this new value of x as x2 and repeat the process,
using x1 and x2 instead of x0 and x1. We continue this process, solving for x3, x4, etc.,
until we reach a sufficiently high level of precision (a sufficiently small difference
between xn and xn−1):

Convergence[edit]

The iterates {\displaystyle x_{n}} of the secant method converge to a root

of {\displaystyle f} if the initial values {\displaystyle x_{0}} and {\displaystyle x_{1}} are

sufficiently close to the root. The order of convergence is υ, where

{\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}\approx 1.618}is the golden ratio. In

particular, the convergence is superlinear, but not quite quadratic.

This result only holds under some technical conditions, namely that {\displaystyle

f} be twice continuously differentiable and the root in question be simple (i.e., with

multiplicity 1).

If the initial values are not close enough to the root, then there is no guarantee that

the secant method converges. There is no general definition of "close enough", but

the criterion has to do with how "wiggly" the function is on the interval {\displaystyle

[x_{0},x_{1}]}. For example, if {\displaystyle f} is differentiable on that interval and

there is a point where {\displaystyle f'=0} on the interval, then the algorithm may not

converge.

Comparison with other root-finding methods[edit]

The secant method does not require that the root remain bracketed, like
the bisection method does, and hence it does not always converge. The false
position method (or regula falsi) uses the same formula as the secant method.

However, it does not apply the formula on and , like the secant method, but on

https://en.wikipedia.org/w/index.php?title=Secant_method&action=edit§ion=1
https://en.wikipedia.org/wiki/Recurrence_relation
https://en.wikipedia.org/w/index.php?title=Secant_method&action=edit§ion=2
https://en.wikipedia.org/w/index.php?title=Secant_method&action=edit§ion=3
https://en.wikipedia.org/wiki/Order_of_convergence
https://en.wikipedia.org/wiki/Golden_ratio
https://en.wikipedia.org/wiki/Quadratic_convergence
https://en.wikipedia.org/w/index.php?title=Secant_method&action=edit§ion=4
https://en.wikipedia.org/wiki/Bisection_method
https://en.wikipedia.org/wiki/False_position_method
https://en.wikipedia.org/wiki/False_position_method

 and on the last iterate such that and have a different sign. This means that
the false position method always converges.

The recurrence formula of the secant method can be derived from the formula
for Newton's method

by using the finite-difference approximation

The secant method can be interpreted as a method in which the derivative is
replaced by an approximation and is thus a quasi-Newton method.

If we compare Newton's method with the secant method, we see that Newton's
method converges faster (order 2 against υ ≈ 1.6). However, Newton's method
requires the evaluation of both and its derivative at every step, while the secant
method only requires the evaluation of . Therefore, the secant method may

occasionally be faster in practice. For instance, if we assume that evaluating
 takes as much time as evaluating its derivative and we neglect all other costs, we
can do two steps of the secant method (decreasing the logarithm of the error by a
factor υ2 ≈ 2.6) for the same cost as one step of Newton's method (decreasing the
logarithm of the error by a factor 2), so the secant method is faster. If, however, we
consider parallel processing for the evaluation of the derivative, Newton's method
proves its worth, being faster in time, though still spending more steps.

Generalizations[edit]

Broyden's method is a generalization of the secant method to more than one
dimension.

The following graph shows the function f in red and the last secant line in bold blue.
In the graph, the x intercept of the secant line seems to be a good approximation of
the root of f.

https://en.wikipedia.org/wiki/False_position_method
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Finite-difference
https://en.wikipedia.org/wiki/Quasi-Newton_method
https://en.wikipedia.org/w/index.php?title=Secant_method&action=edit§ion=5
https://en.wikipedia.org/wiki/Broyden%27s_method

Computational example[edit]

Below, the secant method is implemented in the Python programming language.

It is then applied to find a root of the function f(x) = x2 − 612 with initial points

 and

defsecant_method(f,x0,x1,iterations):

"""Return the root calculated using the secant method."""

foriinrange(iterations):

x2=x1-f(x1)*(x1-x0)/float(f(x1)-f(x0))

x0,x1=x1,x2

returnx2

deff_example(x):

returnx**2-612

https://en.wikipedia.org/w/index.php?title=Secant_method&action=edit§ion=6
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/File:Secant_method_example_code_result.svg

root=secant_method(f_example,10,30,5)

print("Root: {}".format(root))# Root: 24.738633748750722

Rate of convergence of iterative methods.

The term ―iterative method‖ refers to a wide range of techniques that use successive
approximations to obtain more accurate solutions to a linear system at each step…
In numerical analysis it attempts to solve a problem by finding
successive approximations to the solution starting from an initial guess. This
approach is in contrast to direct methods which attempt to solve the problem by a
finite sequence of operations, and, in the absence of rounding errors, would deliver
an exact solution Iterative methods are usually the only choice for non linear
equations. However, iterative methods are often useful even for linear problems
involving a large number of variables (sometimes of the order of millions), where
direct methods would be prohibitively expensive (and in some cases impossible)
even with the best available computing power.

Get Help With Your Essay

If you need assistance with writing your essay, our professional essay writing service
is here to help!

Find out more

Stationary methods are older, simpler to understand and implement, but usually not
as effective Stationary iterative method are the iterative methods that performs in
each iteration the same operations on the current iteration vectors.Stationary
iterative methods solve a linear system with an operator approximating the original
one; and based on a measurement of the error in the result, form a ―correction
equation‖ for which this process is repeated. While these methods are simple to
derive, implement, and analyze, convergence is only guaranteed for a limited class
of matrices. Examples of stationary iterative methods are the Jacobi method,gauss
seidel method and the successive overrelaxation method.

The Nonstationary methods are based on the idea of sequences of orthogonal
vectors Nonstationary methods are a relatively recent development; their analysis is
usually harder to understand, but they can be highly effective These are the Iterative
method that has iteration-dependent coefficients.It include Dense matrix: Matrix for
which the number of zero elements is too small to warrant specialized algorithms.
Sparse matrix: Matrix for which the number of zero elements is large enough that
algorithms avoiding operations on zero elements pay off. Matrices derived from
partial differential equations typically have a number of nonzero elements that is
proportional to the matrix size, while the total number of matrix elements is the
square of the matrix size.

The rate at which an iterative method converges depends greatly on the spectrum of
the coefficient matrix. Hence, iterative methods usually involve a second matrix that

https://www.ukessays.com/services/essay-writing-service.php

transforms the coefficient matrix into one with a more favorable spectrum. The
transformation matrix is called a preconditioner. A good preconditioner improves the
convergence of the iterative method, sufficiently to overcome the extra cost of
constructing and applying the preconditioner. Indeed, without a preconditioner the
iterative method may even fail to converge.

Rate of Convergence

In numerical analysis, the speed at which a convergent sequence approaches its
limit is called the rate of convergence. Although strictly speaking, a limit does not
give information about any finite first part of the sequence, this concept is of practical
importance if we deal with a sequence of successive approximations for an iterative
method as then typically fewer iterations are needed to yield a useful approximation
if the rate of convergence is higher. This may even make the difference between
needing ten or a million iterations.Similar concepts are used
for discretization methods. The solution of the discretized problem converges to the
solution of the continuous problem as the grid size goes to zero, and the speed of
convergence is one of the factors of the efficiency of the method. However, the
terminology in this case is different from the terminology for iterative methods.

The rate of convergence of an iterative method is represented by mu (Î¼) and is
defined as such:

Suppose the sequence{xn} (generated by an iterative method to find an
approximation to a fixed point) converges to a point x, then

limn->[infinity] = |xn+1-x|/|xn-x|[alpha]=Î¼, where Î¼â‰≦0 and Î±(alpha)=order of
convergence.

In cases where Î±=2 or 3 the sequence is said to have quadratic and cubic
convergence respectively. However in linear cases i.e. when Î±=1, for the sequence
to converge Î¼ must be in the interval (0,1). The theory behind this is that for
En+1â‰¤Î¼En to converge the absolute errors must decrease with each
approximation, and to guarantee this, we have to set 0<Î¼<1.

In cases where Î±=1 and Î¼=1 and you know it converges (since Î¼=1 does not tell
us if it converges or diverges) the sequence {xn} is said to converge sublinearly i.e.
the order of convergence is less than one. If Î¼>1 then the sequence diverges.
If Î¼=0 then it is said to converge superlinearly i.e. it‘s order of convergence is higher
than 1, in these cases you change Î± to a higher value to find what the order of
convergence is. In cases where Î¼ is negative, the iteration diverges.

Stationary iterative methods

Stationary iterative methods are methods for solving a linear system of equations.
Ax=B. where is a given matrix and is a given vector. Stationary iterative methods
can be expressed in the simple form

where neither nor depends upon the iteration count . The four main stationary
methods are the Jacobi Method,Gauss seidel method, successive overrelaxation
method (SOR), and symmetric successive overrelaxation method (SSOR).

1.Jacobi method:- The Jacobi method is based on solving for every variable locally
with respect to the other variables; one iteration of the method corresponds to
solving for every variable once. The resulting method is easy to understand and
implement, but convergence is slow. The Jacobi method is a method of solving
a matrix equation on a matrix that has no zeros along its main diagonal . Each
diagonal element is solved for, and an approximate value plugged in. The process is
then iterated until it converges. This algorithm is a stripped-down version of the
Jacobi transformation method of matrix diagnalization.

The Jacobi method is easily derived by examining each of the equations in the
linear system of equations in isolation. If, in the th equation

solve for the value of while assuming the other entries of remain fixed. This gives

which is the Jacobi method.

In this method, the order in which the equations are examined is irrelevant, since the
Jacobi method treats them independently. The definition of the Jacobi method can
be expressed with matrices as

where the matrices , , and represent the diagnol, strictly lower triangular, and strictly
upper triangular parts of , respectively

Convergence:- The standard convergence condition (for any iterative method) is
when the spectral radius of the iteration matrix

Ï•(D âˆ‘ 1R) < 1.

D is diagonal component,R is the remainder.

The method is guaranteed to converge if the matrix A is strictly or
irreducibly diagonally dominant. Strict row diagonal dominance means that for each
row, the absolute value of the diagonal term is greater than the sum of absolute
values of other terms:

The Jacobi method sometimes converges even if these conditions are not satisfied.

2. Gauss-Seidel method:- The Gauss-Seidel method is like the Jacobi method,
except that it uses updated values as soon as they are available. In general, if the
Jacobi method converges, the Gauss-Seidel method will converge faster than the
Jacobi method, though still relatively slowly. The Gauss-Seidel method is a
technique for solving the equations of the linear system of equations one at a time
in sequence, and uses previously computed results as soon as they are available,

There are two important characteristics of the Gauss-Seidel method should be
noted. Firstly, the computations appear to be serial. Since each component of the

new iterate depends upon all previously computed components, the updates cannot
be done simultaneously as in the Jacobi method. Secondly, the new iterate depends
upon the order in which the equations are examined. If this ordering is changed,
the components of the new iterates (and not just their order) will also change. In
terms of matrices, the definition of the Gauss-Seidel method can be expressed as

where the matrices , , and represent the diagonal, strictly lower triangular, and
strictly upper triangular parts of A, respectively.

The Gauss-Seidel method is applicable to strictly diagonally dominant, or symmetric
positive definite matrices A.

Convergence:-

Given a square system of n linear equations with unknown x:

The convergence properties of the Gauss-Seidel method are dependent on the
matrix A. Namely, the procedure is known to converge if either:

A is symmetric positive definite, or

A is strictly or irreducibly diagonally dominant.

The Gauss-Seidel method sometimes converges even if these conditions are not
satisfied.

3.Successive Overrelaxation method:-

The successive overrelaxation method (SOR) is a method of solving a linear system
of equations derived by extrapolating the gauss-seidel method. This extrapolation
takes the form of a weighted average between the previous iterate and the computed
Gauss-Seidel iterate successively for each component,

where denotes a Gauss-Seidel iterate and is the extrapolation factor. The idea is to
choose a value for that will accelerate the rate of convergence of the iterates to the
solution.

In matrix terms, the SOR algorithm can be written as

where the matrices , , and represent the diagonal, strictly lower-triangular, and
strictly upper-triangular parts of , respectively.

If , the SOR method simplifies to the gauss-seidel method. A theorem due to Kahan
shows that SOR fails to converge if is outside the interval .

In general, it is not possible to compute in advance the value of that will maximize
the rate of convergence of SOR. Frequently, some heuristic estimate is used, such
as where is the mesh spacing of the discretization of the underlying physical
domain.

Convergence:-

Successive Overrelaxation method may converge faster than Gauss-Seidel by an
order of magnitude. We seek the solution to set of linear equations

In matrix terms, the successive over-relaxation (SOR) iteration can be expressed as

where , , and represent the diagonal, lower triangular, and upper triangular parts of
the coefficient matrix , is the iteration count, and is a relaxation factor. This matrix
expression is not usually used to program the method, and an element-based
expression is used

Find out how UKEssays.com can help you!

Our academic experts are ready and waiting to assist with any writing project you
may have. From simple essay plans, through to full dissertations, you can guarantee
we have a service perfectly matched to your needs.

View our services

Note that for that the iteration reduces to the gauss-seidel iteration. As with
the Gauss seidel method, the computation may be done in place, and the iteration is
continued until the changes made by an iteration are below some tolerance.

The choice of relaxation factor is not necessarily easy, and depends upon the
properties of the coefficient matrix. For symmetric, positive definite matrices it can be
proven that will lead to convergence, but we are generally interested in faster
convergence rather than just convergence.

4.Symmetric Successive overrelaxation:- Symmetric Successive Overrelaxation
(SSOR) has no advantage over SOR as a stand-alone iterative method; however, it
is useful as a preconditioner for nonstationary methods The symmetric successive
overrelaxation (SSOR) method combines two successive overrelaxation
method (SOR) sweeps together in such a way that the resulting iteration matrix is
similar to a symmetric matrix it the case that the coefficient matrix of the linear
system is symmetric. The SSOR is a forward SOR sweep followed by a backward
SOR sweep in which the unknowns are updated in the reverse order. The similarity
of the SSOR iteration matrix to a symmetric matrix permits the application of SSOR
as a preconditioner for other iterative schemes for symmetric matrices. This is the
primary motivation for SSOR, since the convergence rate is usually slower than the
convergence rate for SOR with optimal ..

Non-Stationary Iterative Methods:-

1.Conjugate Gradient method:- The conjugate gradient method derives its name
from the fact that it generates a sequence of conjugate (or orthogonal) vectors.
These vectors are the residuals of the iterates. They are also the gradients of a
quadratic functional, the minimization of which is equivalent to solving the linear
system. CG is an extremely effective method when the coefficient matrix is

https://www.ukessays.com/services/

symmetric positive definite, since storage for only a limited number of vectors is
required. Suppose we want to solve the following system of linear equations

Ax = b

where the n-by-n matrix A is symmetric (i.e., AT = A), positive definite (i.e., xTAx > 0
for all non-zero vectors x in Rn), and real.

We denote the unique solution of this system by x*.

We say that two non-zero vectors u and v are conjugate (with respect to A) if

Since A is symmetric and positive definite, the left-hand side defines an inner
product

So, two vectors are conjugate if they are orthogonal with respect to this inner
product. Being conjugate is a symmetric relation: if u is conjugate to v, then v is
conjugate to u.

Convergence:- Accurate predictions of the convergence of iterative methods are
difficult to make, but useful bounds can often be obtained. For the Conjugate
Gradient method, the error can be bounded in terms of the spectral condition
number of the matrix . (if and are the largest and smallest eigenvalues of a
symmetric positive definite matrix , then the spectral condition number of is . If is
the exact solution of the linear system , with symmetric positive definite matrix , then
for CG with symmetric positive definite preconditioner , it can be shown that

where , and . From this relation we see that the number of iterations to reach a
relative reduction of in the error is proportional to .

In some cases, practical application of the above error bound is straightforward. For
example, elliptic second order partial differential equations typically give rise to
coefficient matrices with (where is the discretization mesh width), independent of
the order of the finite elements or differences used, and of the number of space
dimensions of the problem . Thus, without preconditioning, we expect a number of
iterations proportional to for the Conjugate Gradient method.

Other results concerning the behavior of the Conjugate Gradient algorithm have
been obtained. If the extremal eigenvalues of the matrix are well separated, then
one often observes so-called; that is, convergence at a rate that increases per
iteration. This phenomenon is explained by the fact that CG tends to eliminate
components of the error in the direction of eigenvectors associated with extremal
eigenvalues first. After these have been eliminated, the method proceeds as if these
eigenvalues did not exist in the given system, i.e., the convergence rate depends on
a reduced system with a smaller condition number. The effectiveness of the
preconditioner in reducing the condition number and in separating extremal
eigenvalues can be deduced by studying the approximated eigenvalues of the
related Lanczos process.

2. Biconjugate Gradient Method-The Biconjugate Gradient method generates two
CG-like sequences of vectors, one based on a system with the original coefficient
matrix , and one on . Instead of orthogonalizing each sequence, they are made
mutually orthogonal, or ―bi-orthogonal‖. This method, like CG, uses limited storage. It
is useful when the matrix is nonsymmetric and nonsingular; however, convergence
may be irregular, and there is a possibility that the method will break down. BiCG
requires a multiplication with the coefficient matrix and with its transpose at each
iteration.

Convergence:- Few theoretical results are known about the convergence of BiCG.
For symmetric positive definite systems the method delivers the same results as CG,
but at twice the cost per iteration. For nonsymmetric matrices it has been shown that
in phases of the process where there is significant reduction of the norm of the
residual, the method is more or less comparable to full GMRES (in terms of numbers
of iterations). In practice this is often confirmed, but it is also observed that the
convergence behavior may be quite irregular , and the method may even break
down . The breakdown situation due to the possible event that can be circumvented
by so-called look-ahead strategies. This leads to complicated codes. The other
breakdown situation, , occurs when the -decomposition fails, and can be repaired by
using another decomposition.

Sometimes, breakdown or near-breakdown situations can be satisfactorily avoided
by a restart at the iteration step immediately before the breakdown step. Another
possibility is to switch to a more robust method, like GMRES.

3. Conjugate Gradient Squared (CGS).

The Conjugate Gradient Squared method is a variant of BiCG that applies the
updating operations for the -sequence and the -sequences both to the same vectors.
Ideally, this would double the convergence rate, but in practice convergence may be
much more irregular than for BiCG, which may sometimes lead to unreliable results.
A practical advantage is that the method does not need the multiplications with the
transpose of the coefficient matrix.

often one observes a speed of convergence for CGS that is about twice as fast as
for BiCG, which is in agreement with the observation that the same ―contraction‖
operator is applied twice. However, there is no reason that the ―contraction‖ operator,
even if it really reduces the initial residual , should also reduce the once reduced
vector . This is evidenced by the often highly irregular convergence behavior of
CGS . One should be aware of the fact that local corrections to the current solution
may be so large that cancelation effects occur. This may lead to a less accurate
solution than suggested by the updated residual. The method tends to diverge if the
starting guess is close to the solution.

4 Biconjugate Gradient Stabilized (Bi-CGSTAB).

The Biconjugate Gradient Stabilized method is a variant of BiCG, like CGS, but using
different updates for the -sequence in order to obtain smoother convergence than
CGS. Bi-CGSTAB often converges about as fast as CGS, sometimes faster and
sometimes not. CGS can be viewed as a method in which the BiCG ―contraction‖

operator is applied twice. Bi-CGSTAB can be interpreted as the product of BiCG and
repeatedly applied GMRES. At least locally, a residual vector is minimized , which
leads to a considerably smoother convergence behavior. On the other hand, if the
local GMRES step stagnates, then the Krylov subspace is not expanded, and Bi-
CGSTAB will break down . This is a breakdown situation that can occur in addition to
the other breakdown possibilities in the underlying BiCG algorithm. This type of
breakdown may be avoided by combining BiCG with other methods, i.e., by selecting
other values for One such alternative is Bi-CGSTAB2 ; more general approaches
are suggested by Sleijpen and Fokkema.

5..Chebyshev Iteration.

The Chebyshev Iteration recursively determines polynomials with coefficients chosen
to minimize the norm of the residual in a min-max sense. The coefficient matrix must
be positive definite and knowledge of the extremal eigenvalues is required. This
method has the advantage of requiring no inner products. Chebyshev Iteration is
another method for solving nonsymmetric problems . Chebyshev Iteration avoids the
computation of inner products as is necessary for the other nonstationary methods.
For some distributed memory architectures these inner products are a
bottleneck with respect to efficiency. The price one pays for avoiding inner products
is that the method requires enough knowledge about the spectrum of the coefficient
matrix that an ellipse enveloping the spectrum can be identified ; however this
difficulty can be overcome via an adaptive construction developed by Manteuffel ,
and implemented by Ashby . Chebyshev iteration is suitable for any nonsymmetric
linear system for which the enveloping ellipse does not include the origin.

Convergence:-

In the symmetric case (where and the preconditioner are both symmetric) for the
Chebyshev Iteration we have the same upper bound as for the Conjugate Gradient
method, provided and are computed from and (the extremal eigenvalues of the
preconditioned matrix).

There is a severe penalty for overestimating or underestimating the field of values.
For example, if in the symmetric case is underestimated, then the method may
diverge; if it is overestimated then the result may be very slow convergence. Similar
statements can be made for the nonsymmetric case. This implies that one needs
fairly accurate bounds on the spectrum of for the method to be effective (in
comparison with CG or GMRES).

Acceleration of convergence

Many methods exist to increase the rate of convergence of a given sequence, i.e. to
transform a given sequence into one converging faster to the same limit. Such
techniques are in general known as ―series acceleration‖. The goal of the
transformed sequence is to be much less ―expensive‖ to calculate than the original
sequence. One example of series acceleration is Aitken‘s delta -squared process.

Unit-III

Simultaneous Linear Equations

Solutions of system of Linear equations

 A Linear Equation is an equation for a line.

A linear equation is not always in the form y = 3.5 − 0.5x,

It can also be like y = 0.5(7 − x)

Or like y + 0.5x = 3.5

Or like y + 0.5x − 3.5 = 0 and more.

(Note: those are all the same linear equation!)

A System of Linear Equations is when we have two or more linear
equations working together.

Example: Here are two linear equations:

2x + y = 5

−x + y = 2

Together they are a system of linear equations.

Can you discover the values of x and y yourself? (Just have a go, play with them a
bit.)

Let's try to build and solve a real world example:

Example: You versus Horse

https://www.mathsisfun.com/algebra/linear-equations.html

It's a race!

You can run 0.2 km every minute.

The Horse can run 0.5 km every minute. But it takes 6 minutes to saddle the horse.

How far can you get before the horse catches you?

We can make two equations (d=distance in km, t=time in minutes)

 You run at 0.2km every minute, so d = 0.2t
 The horse runs at 0.5 km per minute, but we take 6 off its time: d = 0.5(t−6)

So we have a system of equations (that are linear):

 d = 0.2t
 d = 0.5(t−6)

We can solve it on a graph:

Do you see how the horse starts at 6 minutes, but then runs faster?

It seems you get caught after 10 minutes ... you only got 2 km away.

Run faster next time.

So now you know what a System of Linear Equations is.

Let us continue to find out more about them

Solving

There can be many ways to solve linear equations!

Let us see another example:

Example: Solve these two equations:

 x + y = 6
 −3x + y = 2

The two equations are shown on this graph:

Our task is to find where the two lines cross.

Well, we can see where they cross, so it is already solved graphically.

But now let's solve it using Algebra!

Hmmm ... how to solve this? There can be many ways! In this case both equations
have "y" so let's try subtracting the whole second equation from the first:

x + y − (−3x + y) = 6 − 2

Now let us simplify it:

x + y + 3x − y = 6 − 2

4x = 4

x = 1

So now we know the lines cross at x=1.

And we can find the matching value of y using either of the two original equations
(because we know they have the same value at x=1). Let's use the first one (you can
try the second one yourself):

x + y = 6

1 + y = 6

y = 5

And the solution is:

x = 1 and y = 5

And the graph shows us we are right!

Linear Equations

Only simple variables are allowed in linear equations. No x2, y3, √x, etc:

Linear vs non-linear

Dimensions

A Linear Equation can be in 2 dimensions ...

(such as x and y)

... or in 3 dimensions ...

(it makes a plane)

... or 4 dimensions ...

... or more!

Common Variables

For the equations to "work together" they share one or more variables:

A System of Equations has two or more equations in one or more variables

Many Variables

So a System of Equations could have many equations and many variables.

Example: 3 equations in 3 variables

2x + y − 2z = 3

x − y − z = 0

x + y + 3z = 12

There can be any combination:

 2 equations in 3 variables,

 6 equations in 4 variables,

 9,000 equations in 567 variables,

 etc.

Solutions

When the number of equations is the same as the number of variables there
is likely to be a solution. Not guaranteed, but likely.

In fact there are only three possible cases:

 No solution

 One solution

 Infinitely many solutions

When there is no solution the equations are called "inconsistent".

One or infinitely many solutions are called "consistent"

Here is a diagram for 2 equations in 2 variables:

Independent

"Independent" means that each equation gives new information.
Otherwise they are "Dependent".

Also called "Linear Independence" and "Linear Dependence"

Example:

 x + y = 3
 2x + 2y = 6

Those equations are "Dependent", because they are really the same equation, just
multiplied by 2.

So the second equation gave no new information.

Where the Equations are True

The trick is to find where all equations are true at the same time.

True? What does that mean?

Example: You versus Horse

The "you" line is true all along its length (but nowhere else).

Anywhere on that line d is equal to 0.2t

 at t=5 and d=1, the equation is true (Is d = 0.2t? Yes, as 1 = 0.2×5 is true)

 at t=5 and d=3, the equation is not true (Is d = 0.2t? No, as 3 = 0.2×5 is not
true)

Likewise the "horse" line is also true all along its length (but nowhere else).

But only at the point where they cross (at t=10, d=2) are they both true.

So they have to be true simultaneously ...

... that is why some people call them "Simultaneous Linear Equations"

Solve Using Algebra

It is common to use Algebra to solve them.

Here is the "Horse" example solved using Algebra:

Example: You versus Horse

The system of equations is:

 d = 0.2t
 d = 0.5(t−6)

In this case it seems easiest to set them equal to each other:

d = 0.2t = 0.5(t−6)

Start with:0.2t = 0.5(t − 6)

Expand 0.5(t−6):0.2t = 0.5t − 3

Subtract 0.5t from both sides:−0.3t = −3

Divide both sides by −0.3:t = −3/−0.3 = 10 minutes

Now we know when you get caught!

Knowing t we can calculate d:d = 0.2t = 0.2×10 = 2 km

And our solution is:

t = 10 minutes and d = 2 km

https://www.mathsisfun.com/algebra/index.html

Algebra vs Graphs

Why use Algebra when graphs are so easy? Because:

More than 2 variables can't be solved by a simple graph.

So Algebra comes to the rescue with two popular methods:

 Solving By Substitution
 Solving By Elimination

We will see each one, with examples in 2 variables, and in 3 variables. Here goes ...

Solving By Substitution

These are the steps:

 Write one of the equations so it is in the style "variable = ..."

 Replace (i.e. substitute) that variable in the other equation(s).

 Solve the other equation(s)

 (Repeat as necessary)

Here is an example with 2 equations in 2 variables:

Example:

 3x + 2y = 19
 x + y = 8

We can start with any equation and any variable.

Let's use the second equation and the variable "y" (it looks the simplest equation).

Write one of the equations so it is in the style "variable = ...":

We can subtract x from both sides of x + y = 8 to get y = 8 − x. Now our equations
look like this:

 3x + 2y = 19
 y = 8 − x

Now replace "y" with "8 − x" in the other equation:

 3x + 2(8 − x) = 19
 y = 8 − x

Solve using the usual algebra methods:

Expand 2(8−x):

 3x + 16 − 2x = 19
 y = 8 − x

Then 3x−2x = x:

 x + 16 = 19
 y = 8 − x

And lastly 19−16=3

 x = 3
 y = 8 − x

Now we know what x is, we can put it in the y = 8 − x equation:

 x = 3
 y = 8 − 3 = 5

And the answer is:

x = 3
y = 5

Note: because there is a solution the equations are "consistent"

 Check: why don't you check to see if x = 3 and y = 5 works in both equations?

Solving By Substitution: 3 equations in 3 variables

OK! Let's move to a longer example: 3 equations in 3 variables.

This is not hard to do... it just takes a long time!

Example:

 x + z = 6
 z − 3y = 7

 2x + y + 3z = 15

We should line up the variables neatly, or we may lose track of what we are doing:

x + z = 6

 − 3y + z = 7

2x + y + 3z = 15

WeI can start with any equation and any variable. Let's use the first equation and the
variable "x".

Write one of the equations so it is in the style "variable = ...":

x = 6 − z

 − 3y + z = 7

2x + y + 3z = 15

Now replace "x" with "6 − z" in the other equations:

(Luckily there is only one other equation with x in it)

 x = 6 − z

 − 3y + z = 7

2(6−z) + y + 3z = 15

Solve using the usual algebra methods:

2(6−z) + y + 3z = 15 simplifies to y + z = 3:

x = 6 − z

 − 3y + z = 7

 y + z = 3

Good. We have made some progress, but not there yet.

Now repeat the process, but just for the last 2 equations.

Write one of the equations so it is in the style "variable = ...":

Let's choose the last equation and the variable z:

x = 6 − z

 − 3y + z = 7

 z = 3 − y

Now replace "z" with "3 − y" in the other equation:

x = 6 − z

 − 3y + 3 − y = 7

 z = 3 − y

Solve using the usual algebra methods:

−3y + (3−y) = 7 simplifies to −4y = 4, or in other words y = −1

x = 6 − z

 y = −1

 z = 3 − y

Almost Done!

Knowing that y = −1 we can calculate that z = 3−y = 4:

x = 6 − z

 y = −1

 z = 4

And knowing that z = 4 we can calculate that x = 6−z = 2:

x = 2

 y = −1

 z = 4

And the answer is:

x = 2
y = −1
z = 4

Check: please check this yourself.

We can use this method for 4 or more equations and variables... just do the same
steps again and again until it is solved.

Conclusion: Substitution works nicely, but does take a long time to do.

Solving By Elimination

Elimination can be faster ... but needs to be kept neat.

"Eliminate" means to remove: this method works by removing variables until there is
just one left.

The idea is that we can safely:

 multiply an equation by a constant (except zero),
 add (or subtract) an equation on to another equation

Like in these examples:

WHY can we add equations to each other?

Imagine two really simple equations:

x − 5 = 3
5 = 5

We can add the "5 = 5" to "x − 5 = 3":

x − 5 + 5 = 3 + 5
x = 8

Try that yourself but use 5 = 3+2 as the 2nd equation

It will still work just fine, because both sides are equal (that is what the = is for!)

We can also swap equations around, so the 1st could become the 2nd, etc, if that
helps.

OK, time for a full example. Let's use the 2 equations in 2 variables example from
before:

Example:

 3x + 2y = 19
 x + y = 8

Very important to keep things neat:

3x + 2y = 19

x + y = 8

Now ... our aim is to eliminate a variable from an equation.

First we see there is a "2y" and a "y", so let's work on that.

Multiply the second equation by 2:

3x + 2y = 19

2x + 2y = 16

Subtract the second equation from the first equation:

x = 3

2x + 2y = 16

Yay! Now we know what x is!

Next we see the 2nd equation has "2x", so let's halve it, and then subtract "x":

Multiply the second equation by ½ (i.e. divide by 2):

x = 3

x + y = 8

Subtract the first equation from the second equation:

x = 3

 y = 5

Done!

And the answer is:

x = 3 and y = 5

And here is the graph:

The blue line is where 3x + 2y = 19 is true

The red line is where x + y = 8 is true

At x=3, y=5 (where the lines cross) they are both true. That is the answer.

Here is another example:

Example:

 2x − y = 4
 6x − 3y = 3

Lay it out neatly:

2x − y = 4

6x − 3y = 3

Multiply the first equation by 3:

6x − 3y = 12

6x − 3y = 3

Subtract the second equation from the first equation:

0 − 0 = 9

6x − 3y = 3

0 − 0 = 9 ???

What is going on here?

Quite simply, there is no solution.

They are actually parallel lines:

And lastly:

Example:

 2x − y = 4
 6x − 3y = 12

Neatly:

2x − y = 4

6x − 3y = 12

Multiply the first equation by 3:

6x − 3y = 12

6x − 3y = 12

Subtract the second equation from the first equation:

0 − 0 = 0

6x − 3y = 3

0 − 0 = 0

Well, that is actually TRUE! Zero does equal zero ...

... that is because they are really the same equation ...

... so there are an Infinite Number of Solutions

They are the same line:

And so now we have seen an example of each of the three possible cases:

 No solution
 One solution
 Infinitely many solutions

Solving By Elimination: 3 equations in 3 variables

Before we start on the next example, let's look at an improved way to do things.

Follow this method and we are less likely to make a mistake.

First of all, eliminate the variables in order:

 Eliminate xs first (from equation 2 and 3, in order)
 then eliminate y (from equation 3)

So this is how we eliminate them:

We then have this "triangle shape":

Now start at the bottom and work back up (called "Back-Substitution")
(put in z to find y, then z and y to find x):

And we are solved:

ALSO, we will find it is easier to do some of the calculations in our head, or on
scratch paper, rather than always working within the set of equations:

Example:

 x + y + z = 6
 2y + 5z = −4
 2x + 5y − z = 27

Written neatly:

x + y + z = 6

 2y + 5z = −4

2x + 5y − z = 27

First, eliminate x from 2nd and 3rd equation.

There is no x in the 2nd equation ... move on to the 3rd equation:

Subtract 2 times the 1st equation from the 3rd equation (just do this in your head
or on scratch paper):

And we get:

x + y + z = 6

 2y + 5z = −4

 3y − 3z = 15

Next, eliminate y from 3rd equation.

We could subtract 1½ times the 2nd equation from the 3rd equation (because 1½
times 2 is 3) ...

... but we can avoid fractions if we:

 multiply the 3rd equation by 2 and
 multiply the 2nd equation by 3

and then do the subtraction ... like this:

And we end up with:

x + y + z = 6

 2y + 5z = −4

 z = −2

We now have that "triangle shape"!

Now go back up again "back-substituting":

We know z, so 2y+5z=−4 becomes 2y−10=−4, then 2y=6, so y=3:

x + y + z = 6

 y = 3

 z = −2

Then x+y+z=6 becomes x+3−2=6, so x=6−3+2=5

x = 5

 y = 3

 z = −2

And the answer is:

x = 5
y = 3

z = −2

Check: please check for yourself.

General Advice

Once you get used to the Elimination Method it becomes easier than Substitution,
because you just follow the steps and the answers appear.

But sometimes Substitution can give a quicker result.

 Substitution is often easier for small cases (like 2 equations, or sometimes 3
equations)

 Elimination is easier for larger cases

And it always pays to look over the equations first, to see if there is an easy shortcut
... so experience helps.

Gaussian Elimination with Partial Pivoting

Terry D. Johnson
10.001 Fall 2000

In the problem below, we have order of magnitude differences between coefficients
in the different rows.

Step 0a: Find the entry in the left column with the largest absolute value. This entry
is called the pivot.

Step 0b: Perform row interchange (if necessary), so that the pivot is in the first row.

Step 1: Gaussian Elimination

Step 2: Find new pivot

Step 3: Switch rows (if necessary)

Step 4: Gaussian Elimination

Step 5: Find new pivot

Step 6: Switch rows (if necessary)

Step 7: Gaussian Elimination

Step 8: Back Substitute

-0.2x4 = -0.05; x4 = 4

100x3 + 200x4 = 800; x3 = 0

x2 + 2x3 + x4 =4; x2 = 0

x1 + 2x2 + x3 = 1; x1 = 1

Pivoting helps reduce rounding errors; you are less likely to add/subtract with very
small number (or very large) numbers.

Direct Methods

 Direct methods : These are the methods which can find the solution of the
system in a finite

number of steps known apriori. Some of the important direct methods are

1. Elimination methods

2. Decomposition methods

Gauss Elimination Method :

There are two basic steps in this elimination method. They are

 Forward elimination

 Back substitution.

In forward elimination the augmented matrix (the elements of the vector b has joined

with the coefficient matrix A as (n+1)th column) and is denoted by A|b is converted

into upper diagonal form by making use of matrix row transformations (one can also

convert into a lower triangular form in which case the process is called backward

elimination).

Then by starting with the last row of the upper triangular matrix (first row for lower

triangular matrix) the unknown quatity is obtained by back (forward) substitution.

For example consider the following n algebraic linear equations in n unknowns x 1,

x 2 , . . ., xn as

a11 x1 + a 12x2 + . . . + a 1nx n = b1

a21x 1 + a 22 x2 + . . . + a 2n xn = b 2

. . .

ai1x 1 + a i2 x2 + . . . + a in xn = bi

. . .

an1x 1 + a n2 x2 + . . . + a nn xn = b n

or in the matrix notation Ax = b

where A =

a11 x 1 a12 x 2 . . . a 1nxn

a21x1 a22x 2 . . . a2nx n

. . .

. . .

. . .

an1x1 an2x 2 . . . annx n

x = (x1 , x2, . . ., x n)
 T and b = (b1 , b2, . . ., bn)

T

Forward elimination procedure :

Use the row transformation

R2 ® R2 - R 1*a21/a11means the elements of the second row are replaced by the
second row elements subtracted with the first row elements multiplied with the

coefficient of the first element of the second row and divided with the diagonal
elements of the first row.

This will make the elements in the second row first column as zero. Similarly the
remaining (n-2) rows are also replaced with corresponding row transformations so
that the elements below the diagonal element in the first column become zero.

Now the elements of the second now can be used to make the elements below the
diagonal element of the second column, zero. Here the elements of the first row
cann't be used since that will change the zeros in the first column to non zero again.

By applying similar procedure for the remaining columns of the augmented
matrix A|b(except the last column), the coefficent matrix part of the augmented
matrix A|b will become upper diagonal. (A similar procedure can be applied from the
last row to make the coefficient matrix A as lower diagonal). Now the last row of the
augmented matrix has only two non-zero terms (the coefficient of x n and bn). This
can be used to find xn. Once xn is known, the value of xn is substituted in (n-1)th row
and obtain the xn-1. As we continue this process until first row gives unknown
quatities x1, x 2, . . ., x n.

Example : Consider the simple example :

x1 + x2 + x3 = 6

2x1 + 3x2 + 4x3 = 20

3x1 + 4x2 + 2x3 = 17

here A =

1 1 1

 ,

b =

6

20

17

 2 3 4

3 4 2

and the unknown vector X = (x1 , x 2, x 3)
T

Augmented matrix is A|b =

1 1 1 6

 2 3 4 20

3 4 2 17

Forward elimination :

R2 ® R2 - 2/1 R 1
R3 ® R3 - 3/1 R 1

A|b =

1 1 1 6

 0 1 2 8

0 1 -1 -1

R3 ® R3 -1/1 R 2

A|b =

1 1 1 6

 0 1 2 8

0 0 -3 -9

Back Substitution :

From the last row

-3x3 = -9 Þ x3 = 3

From the second row x2 + 2x3 = 8
x2 = 8 - 2x3 = 2

Now from the first row x 1+ x2 + x 3 = 6

x1 = 6 - 2 - 3 =1 Þ x = (1, 2, 3) TThe same procedure can be extended to the system
of any order n provided the system has an unique solution.

Pivoting : The main draw back of the above elimination process is division by the
diagonal term while converting the augmented matrix into upper triangular form. If
the diagonal element is zero or a vanishingly very small then the elements of the
rows below this diagonal become very large in magnitude and difficult to handle
because of the finite storage capacity of the computers. Alternative is to convert the
system such that the element which has large magnitude in that column comes at
the pivotal position i.e., the diagonal position.

Partial Pivoting : If only row interchanging is used to bring the element of large
magnitude of the pivotal column to the pivotal position at each step of diagonalization
then such a process is called partial pivoting. In this process the matrix may have
larger element in non-pivotal column(the column where the pivot is there) but the
largest element in the pivotal column only brought to pivotal (or diagonal) position in
this process by making use of row transformations.

Complete Pivoting : In this process the largest element(in magnitude) of the whole
coefficient matrix A is first brought at 1x 1 position of the coefficeint matrix and then
leaving the first row and first column, the largest among the remaining elements is
brought to the pivotal 2 x2 position and so on by using both row and column
transformations, is called complete pivoting. During row transformations the last
column of the augmented matrix also has to be considered but this column is not
considered to find the largest element in magnitude. Since the column
transformations are also allowed in this process, there will be a change in the

position of the individual elements of the unknown vector X. Hence in the end the
elements of the unknown vector X has to be rearranged by applying inverse column
transformations in reverse order to all the column transformations preformed.

Example : Consider x 1+ x2 + x3 = 6, 3x 1 + 3x 2 + 4x 3 = 20, 2x1+ x 2 + 3x3 = 13Partial

pivoting : Since the largest element in the first column is at 3x1 which is not in the

pivotal position, perform the row transformation R1 « R 2. Now the system is

3x1 + 3x2 + 4x 3 = 20

x1+ x2 + x3 = 6

2x1+ x2 + 3x3 = 13

Augmented matrix

is =

3 3 4 20

 1 1 1 6

2 1 3 13

R2 ® R2 - 1/3 R 1

R3 ® R3 - 2/3 R 1

A|b =

3 3 4 20

 0 0 -1/3 -2/3

0 -1 1/3 -1/3

Since this is a '0' at the pivotal position i.e., at second row second column

apply R 2«R3 (interchange rows tow and three)

A|b =

3 3 4 20

 0 -1 1/3 -1/3

0 0 -1/3 -2/3

Now the augmented matrix is in diagonal form(the part of coefficient matrix A).

Back substitution : From the last row : -1/3x3 = -2/3 Þ x 3 = 2
Now from the second row
-x2 = -1/3 - 1/3x2 Þ x 2 =1
and from the first row 3x1 = 20 - 3x1 - 4x(2) Þ x1 =3
Hence the solution is X = (3 1 2)T

Complete Pivoting :

The given system is

3x1+ 3x2 + 4x 3 = 20
x1+ x2 + x3 = 6
2x1+ x2 + 3x3 = 13
 Since the largest element in magnitude is at first row third column perform the
column transformation C1 « C3 (interchange first and third columns) then the
augmented matrix is

Augmented matrix

is =

4 3 3 20

 1 1 1 6

3 1 2 13

(please note the order of the individual elements of the unknown vector x is

now (x3 x2 x 1)
 T

Perform R2 ® R2 - 1/4R 1

R3 ® R3 - 3/4R 1

A|b =

4 3 3 20

 0 1/4 1/4 -2

0 -5/4 -1/4 3/5

Now the elment with the largest magnitude is in the third row(leaving the first row

aside)

Perform R2« R3

A|b =

4 3 3 20

 0 -5/4 -1/4 -2

0 1/4 1/4 1

R3 ® R3 - (-1/5) R 2

A|b =
4 3 3 20

0 -5/4 -1/4 -2

0 0 1/5 3/5

From the last row 1/5x 1 = 3/5 Þ x1 =3

From the second row -5/4x 2 = -2 +1/4 x 3 Þ x 2=1

4x3 = 20-3x2-3x 1 = 20 -3 -9 = 8 Þ x 3 = 2

COMPLEXITY OR OPERATIONAL COUNT

First step (division by first pivot) : n

second step (division by second pivot) : n-1

.

.

.

:

:

:

.

.

.

nth step(division by nth pivot) : 1

Total number of divisions = Sn = n(n+1) / 2

no. of multiplications:

First step : second equ : n

third equ : n

.

.

.

:

:

:

.

.

.

nth equ : n

Total : n(n-1)

Similarly for second, third and so on
ÞTotal no of multiplications in Forward elimination = Sn(n-1) = S(n2 - n) = (n/3)
(n+1)(n-1)

No. of multiplications in back substitutions

(n-1)th equation : 1

(n-2)th equation : 2

.

.

:

:

:

.

.

.

first equation : n-1

ÞTotal no of multiplications in back substitution = S(n-1) = (n/2)(n-1)

Total multiplications = (n/3)(n+1)(n-1) + (n/2)(n-1) = (n/6) (n-1)(2n+5)

Operational count = Total no of divisions and multiplications

= (n/2)(n+1) + (n/6)(n-1)(2n+5) = (n/3)(n2 +3n -1)

for very large 'n' the operational count is @ n3/3 or the complexity of the Gauss
elimination is O(n3/3)

No. of additions and subtractions = (n/6)(n-1)(2n+5).

Similarly operational count for cholesky method is (1/6)(n3+9n2+2n).

Ill Conditioned Systems :

During computation it is not possible to store the numbers exactly in the computer
but prone to some round off errors. If dA is the error in A and db is the error in b then

the equation Ax = b is actually solved for (A + dA) = b + db.
(or)

|| - x|| < ||(A + dA)-1 - A-1|| ||b|| + ||(A + dA)-1|| ||db||

where ||.|| is any matrix norm

This gives

|| - x|| < (||A-1dA|| ||db||) (||A-1|| / (1 - ||A-1dA||))

|| - x|| < [||db|| / ||b|| + ||dA|| / ||dA||] (k(A) / (1 - ||A-1dA||)))

where k(A) = ||A-1|| ||A-1|| is called the condition number of the matrix A. If k(A) is
small (close to one) small change in A and b leads to small changes in x where as
for large values of k(A) a small change in A or b (or both) leads to large changes
in x. The systems for which k(A) is large are called ill conditioned systems.

Example : consider 2.1x +1.8y = 2.1 and 6.2x + 5.3y = 6.2

eigen value of A are 74.18 and l2 = 0.000012
if we use || ||2 for the norm then k(A) = Ö(l1/l2) = 2472.73
That is the given system is ill-conditioned.

Ill Conditioned system of equations

In this segment we'll talk about how to differentiate between ill-conditioned and well-

conditioned systems of equations. So let‘s suppose somebody gives you a system of

equations which is in the matrix form and turns out to be ax equals c. What A is the

coefficient matrix and c is the right hand side vector and of course x is our solution

vector or what we call as the unknown vector. So whenever we are solving or setting

up simultaneous linear equations we write them in the form of a times x equals c

where a is the coefficient matrix x is the solution vector and c is the right hand side

vector. What you would like to see is that if you wanted to find whether this

particular system of equations is well-conditioned or ill-conditioned is to say the

following: that hey if I make a small change in the elements of the a matrix then how

much change is it making in the solution vector? Or if I make a small change in my c

vector, then how much change does it make in my solution vector? Because you

would like that A if I make a small change in the coefficient matrix, you would like the

solution vector to change in a small amount or if you change the right hand side

vector you would like the solution vector to change in a small amount.

Because we are going to as we go through the process of setting up simultaneous

linear equations for real life problems those might be set up through a program

where we‘re going to have round-off errors in the calculation of the a matrix and the

calculation of the c matrix I suppose. We don‘t want such a round off errors or the

lack of our use of precision when we use only single precision rather than double

precision or quad precision to affect adversely what the solution vector is. If it does

we want to have a mechanism of knowing whether it is doing so.

So, let's look at some examples right here to see that if from a simple example if a

system of equations is well-conditioned and ill-conditioned. Let‘s suppose somebody

says is this particular system of equations 1 2 2 3.99 xy is equal to 4 7.999 well-

conditioned or ill-conditioned. We want to be able to make the difference between

saying that hey if someone gave me a system of equations like this one is it well-

conditioned or ill-conditioned. I can see that if I wanted to solve the set of equations it

does have a simple solution for example. What is the solution to this one? It's two

comma one. So x y is two comma one. So if we take x equal two and y equal one. In

fact, if you plug x equal to two and y equal to one in here you will get 4 and 7.999. So

that's itself a solution for that. And we want to see that whether if a small change in

the caution matrix is it going to result in a very different value x and y I'm going to

get. Or if I make a small change in my right hand side vector is it going to make a

make change in my x and y. And what I'm doing now here islet‘s suppose I make a

small change in my caution matrix. So What I'm doing is as follows. I'm taking 1.001

so I'm making a small change in the caution matrix. Changing by the thousands I get

3.998 so what I'm doing is that I‘m making a change of about a magnitude of point

zero zero one for all of these elements which are here in the caution matrix. And I'm

not changing the right hand side.

And I want to see that if hey does it make a big difference in my solution? And what I

find out is that hey that if I solve these two equations, two unknowns by hand or by

using Matlab or a new kind of calculator the answer that I should get is as follows

3.994 0.001388. And you can see that just by watching it or just by looking at it you

can see that this value of 2 has changed to almost 4. This value of 1 has

to changed to almost a value of 001. So very different with very small change being

made in the caution of the a matrix. So we can very well see that it is not a well-

conditioned system of equations. In order to complete the argument lets go and

change the right hand side a little bit. So let‘s suppose I have 1 2 2 3.999 here. And

what I do is I keep the caution matrix the same but I change the right hand side a

little bit. So let me make this to be again one thousandths off of a difference there

and 7.9998 here and one thousandths of a difference right here. And let‘s go and

see what I get for values of x and y. So I get x and y here and if I calculate the value

I get minus 3.999 and 4.00. So again you're finding out that from the original set of

equations you had right here where the solution was 2 and 1 I made a very small

change. I changed 4 to 4.001. I changed 7.999 to 7.998. Small change, small

relative change in the right hand side vector. But when I saw these two questions

these two unknowns by calculator, Matlab, whatever we find out that the solution

which I get is different. This was 2 now it is minus 3.999. This was 1 and now it‘s 4.

So if somebody had to ask me just by intuition if this is a well-conditioned system of

equations or an ill-conditioned system of equations I would tell them this to be an ill-

conditioned system of equations.

Now in the later segments we'll talk about how do we do this quantitatively without

having to do this. But as an illustration to illustrate the point that what does it mean

that a particular system of equations well-conditioned and ill-conditioned, this is a

very good example to follow. Let‘s say if this system of equations is 1 2 2 3 x y is it

well conditioned system of equations or ill conditioned. We just want to illustrate the

fact whether it is well-conditioned or ill-conditioned. So if you look at the, I didn't put

the right hand side here it should be four and seven. So if we have this system of

equations is it well-conditioned or ill-conditioned. The solution to this set of equations

if you would either solve it or plug in these values of x equals 2 and y equal to 1 you

are going to get four and 7 or if you solve these two questions two unknowns you will

get x y to be two and one. In order to find out whether this previous system of

equations is well-conditioned or ill-conditioned I'm going to conduct two experiments.

I'm going to make a small change in my caution matrix.

So let me make a small change in my caution matrix. I'm going to make one-

thousandth of a difference to one. I'm going to make 2 to be 2.001. I'm going to make

this to be 2.001 and I'm going to make this to be 3.001. I'm going to say x y is equal

to 4 and 7. So I have not made any changes in the right hand side but I made a very

small change to the caution matrix right here by changing the cautions by a

thousandth. And so what I get is x y when I solve these two equations two unknowns

by hand or by a calculator or by Matlab I get 2.003 and 0.997. And you can very well

see that 2.003 is very close to 2 and 0.997 is very close to 1. So a small change in

the caution matrix does not result in a large change in my solution vector. A small

change in the caution matrix resulted in a small change in my solution vector. Let's

compare for the sake of completion of the experiment lets go and change the right

hand side vector a little bit. So we have 2 1 2 2 3 x y equal to, we'll change the right

hand side a little bit.

So let‘s suppose we make this to be 4.001 and 7.001. So we are changing it by a

thousandth here the right hand side vector. And when I saw this set of equations I

found out that hey my x and y turned out to be equal to 1.999 and 1.001. So again

this number is very close to two and this number is very close to one. So a small

change in the right hand side resulted in a small change in my solution vector it did

not result in a large change. So in this case if I'm conducting this experiment in

finding out this particular system of equations is well-conditioned. Again, we want

to figure out what we mean by well-conditioned and ill conditioned systems of

equations quantitatively not by just conducting these simply experiments right here.

Just for illustration purposes we'll do that in the later segments. But this is a good

example of getting started on at least understanding the concept of ill-conditioned

and well-conditioned equations. That is the end of this segment
Iterative refinement is a technique introduced by Wilkinson for reducing the roundoff
error produced during the solution of simultaneous linear equations. Higher precision
arithmetic is required for the calculation of the residuals.

Iterative refinement

The first research paper I ever published, in 1967, was titled "Iterative Refinement in
Floating Point". It was an analysis of a technique introduced by J. H. Wilkinson
almost 20 years earlier for a post processing cleanup that reduces the roundoff error
generated when Gaussian elimination or a similar process is used to solve a system
of simultaneous linear equations, Ax=bAx=b.
The iterative refinement algorithm is easily described.

 Solve Ax=bAx=b, saving the triangular factors.

 Compute the residuals, r=Ax−br=Ax−b.

 Use the triangular factors to solve Ad=rAd=r.

 Subtract the correction, x=x−dx=x−d

 Repeat the previous three steps if desired.

Complexity

Almost all of the work is in the first step, which can be thought of as producing
triangular factors such as LL and UU so that A=LUA=LU while solving LUx=bLUx=b.
For a matrix of order nn the computational complexity of this step is O(n3)O(n3).
Saving the factorization reduces the complexity of the remaining refinement steps to
something much less, only O(n2)O(n2).
The residual

By the early 1960s we had learned from Wilkinson that if a system of simultaneous
linear equations is solved by a process like Gaussian elimination or Cholesky
factorization, the residual will always be order roundoff error, relative to the matrix
and the computed solution, even if the system is nearly singular. This is both good
news and bad news.

The good news is that AxAx is always close to bb. This says that the computed
solution always comes close to solving the equations, even though xx might not be
close to the theoretical correct solution, A−1bA−1b. The pitcher always puts the ball
where the batter can hit it, even though that might not be in the strike zone.
The bad news is that it is delicate to compute the residual accurately. If the same
precision arithmetic is used to compute the residual that was used to solve the
system, the roundoff error involved in computing rr will be almost comparable to the
effect of the roundoff error present in xx, so the correction has little chance of being
useful.

Inner product

We need to use higher precision arithmetic while computing the residual. Each
component of the residual involves a sum of products and then one final subtraction.
The exact product of two numbers with a certain precision has twice that precision.
With the computers that Wilkinson used, and that I used early in my career, we had
access to the full results of multiplications. We were able to write inner product
routines that accumulated the sums with twice the working precision.

But it is not easy to write the accumulated inner product routine in modern, portable,
machine independent software. It was not easy in Fortran. It is not easy in MATLAB.
The original specification of the BLAS, the Basic Linear Algebra Subroutines, was
deliberately silent on the matter. Subsequent proposals for extensions of the BLAS
have introduced mixed precision, but these extensions have not been widely
adopted. So, the key tool we need to implement iterative refinement has not been
available.

In my next blog post, I will describe two MATLAB functions residual3p and dot3p.
They provide enough of what I call "triple precision" arithmetic to produce an
accumulated inner product. It's a hack, but it works well enough to illustrate iterative
refinement.

Example

My example involves perhaps the world's most famous badly conditioned matrix, the
Hilbert matrix. I won't begin with the Hilbert matrix itself because its elements are the
fractions

hi,j=1i+j−1hi,j=1i+j−1

Many of these fractions can't be represented exactly in floating point, so I would have
roundoff error before even getting started with the elimination. Fortunately, the
elements of the inverse Hilbert matrix are integers that can be readily generated.
There is a function invhilb in the MATLAB elmat directory. I'll choose the 8-by-8. The
elements are large, so I need a custom format to display the matrix.

 n = 8;

 A = invhilb(n);

 disp(sprintf('%8.0f %11.0f %11.0f %11.0f %11.0f %11.0f %11.0f %11.0f \n',A))

64 -2016 20160 -92400 221760 -288288 192192 -51480

 -2016 84672 -952560 4656960 -11642400 15567552 -10594584
2882880

 20160 -952560 11430720 -58212000 149688000 -204324120 141261120
-38918880

 -92400 4656960 -58212000 304920000 -800415000 1109908800 -
776936160 216216000

 221760 -11642400 149688000 -800415000 2134440000 -2996753760
2118916800 -594594000

 -288288 15567552 -204324120 1109908800 -2996753760 4249941696 -
3030051024 856215360

 192192 -10594584 141261120 -776936160 2118916800 -3030051024
2175421248 -618377760

 -51480 2882880 -38918880 216216000 -594594000 856215360 -
618377760 176679360

I am going to try to compute the third column of the inverse of this inverse, which is a
column of the Hilbert matrix itself. The right hand side b is a column of the identity
matrix. I am hoping to get the fractions x = [1/3 1/4 ... 1/9 1/10].

 b = zeros(n,1);

 b(3) = 1

 format compact
 format longe

 x = A\b

b =

 0

 0

 1

 0

 0

 0

 0

 0

x =

 3.333333289789291e-01

 2.499999961540004e-01

 1.999999965600743e-01

 1.666666635570877e-01

 1.428571400209730e-01

 1.249999973935827e-01

 1.111111087003338e-01

 9.999999775774569e-02

Since I know what x is supposed to look like, I can just eyeball the output and see
that I have only about half of the digits correct.
(I used backslash to solve the system. My matrix happens to be symmetric and
positive definite, so the elimination algorithm involves the Cholesky factorization. But
I'm going to be extravagant, ignore the complexity considerations, and not save the
triangular factor.)

Inaccurate residual

Here's my first crack at the residual. I won't do anything special about the precision
this time; I'll just use an ordinary MATLAB statement.

 r = A*x - b

r =

 -9.094947017729282e-13

 1.746229827404022e-10

 4.656612873077393e-10

 1.862645149230957e-08

 -1.490116119384766e-08

 -2.980232238769531e-08

 -3.725290298461914e-08

 -1.862645149230957e-08

It's important to look at the size of the residual relative to the sizes of the matrix and
the solution.

 relative_residual = norm(r)/(norm(A)*norm(x))

relative_residual =

 1.147025634044834e-17

The elements in this computed residual are the right order of magnitude, that is
roundoff error, but, since I didn't use any extra precision, they are not accurate
enough to provide a useful correction.

 d = A\r

 no_help = x - d

d =

 -1.069920014936507e-08

 -9.567761339244008e-09

 -8.614990592214338e-09

 -7.819389121717837e-09

 -7.150997084009303e-09

 -6.584022612326096e-09

 -6.098163254532801e-09

 -5.677765952511023e-09

no_help =

 3.333333396781292e-01

 2.500000057217617e-01

 2.000000051750649e-01

 1.666666713764768e-01

 1.428571471719701e-01

 1.250000039776053e-01

 1.111111147984970e-01

 1.000000034355116e-01

Accurate residual

Now I will use residual3p, which I intend to describe in my next blog and which
employs "triple precision" accumulation of the inner products required for an
accurate residual.

 r = residual3p(A,x,b)

r =

 -4.045319634826683e-12

 1.523381421009162e-10

 -9.919851606809971e-10

 2.429459300401504e-09

 8.826383179894037e-09

 -2.260851861279889e-08

 -1.332933052822227e-08

 -6.369845095832716e-09

Superficially, this residual looks a lot like the previous one, but it's a lot more
accurate. The resulting correction works very well.

 d = A\r

 x = x - d

d =

 -4.354403560053519e-09

 -3.845999016894392e-09

 -3.439925156187715e-09

 -3.109578484769736e-09

 -2.836169428940436e-09

 -2.606416977917484e-09

 -2.410777025186154e-09

 -2.242253997222573e-09

x =

 3.333333333333327e-01

 2.499999999999994e-01

 1.999999999999995e-01

 1.666666666666662e-01

 1.428571428571425e-01

 1.249999999999996e-01

 1.111111111111108e-01

 9.999999999999969e-02

I've now got about 14 digits correct. That's almost, but not quite, full double precision
accuracy.

Iterate

Try it again.

 r = residual3p(A,x,b)

r =

 3.652078639504452e-12

 -1.943885052924088e-10

 2.523682596233812e-09

 -1.359348900109580e-08

 3.645651958095186e-08

 -5.142027248439263e-08

 3.649529745075597e-08

 -1.027348206505963e-08

Notice that the residual r is just about the same size as the previous one, even
though the solution x is several orders of magnitude more accurate.

 d = A\r

 nice_try = x - d

d =

 2.733263259661321e-16

 2.786131033681204e-16

 2.611667424188757e-16

 2.527960139656094e-16

 2.492795072717761e-16

 2.196895809665418e-16

 2.110200076421557e-16

 1.983918218604762e-16

nice_try =

 3.333333333333324e-01

 2.499999999999991e-01

 1.999999999999992e-01

 1.666666666666660e-01

 1.428571428571422e-01

 1.249999999999994e-01

 1.111111111111106e-01

 9.999999999999949e-02

The correction changed the solution, but didn't make it appreciably more accurate.
I've reached the limits of my triple precision inner product.

More accurate residual

Bring in the big guns, the Symbolic Math Toolbox, to compute a very accurate
residual. It is important to use either the 'f' or the 'd' option when converting x to
a sym so that the conversion is done exactly.

% r = double(A*sym(x,'d') - b)
 r = double(A*sym(x,'f') - b)

r =

 3.652078639504452e-12

 -1.943885052924088e-10

 2.523682707256114e-09

 -1.359348633656055e-08

 3.645651780459502e-08

 -5.142027803550775e-08

 3.649529478622071e-08

 -1.027348206505963e-08

The correction just nudges the last two digits.

 d = A\r

 x = x - d

d =

 -6.846375178532078e-16

 -5.828670755614817e-16

 -5.162536953886886e-16

 -4.533410583885285e-16

 -3.965082139594863e-16

 -3.747002624289523e-16

 -3.392348053271079e-16

 -3.136379972458518e-16

x =

 3.333333333333333e-01

 2.500000000000000e-01

 2.000000000000000e-01

 1.666666666666667e-01

 1.428571428571429e-01

 1.250000000000000e-01

 1.111111111111111e-01

 1.000000000000000e-01

Now, with a very accurate residual, the elements I get in x are the floating point
numbers closest to the fractions in the Hilbert matrix. That's the best I can do.

Gauss–Seidal iterative method

Gauss–Seidel method is an improved form of Jacobi method, also known as
the successive displacement method. This method is named after Carl Friedrich
Gauss (Apr. 1777–Feb. 1855) and Philipp Ludwig von Seidel (Oct. 1821–Aug. 1896).
Again, we assume that the starting values are u2 = u3 = u4 = 0. The difference
between the Gauss–Seidel and Jacobi methods is that the Jacobi method uses the
values obtained from the previous step while the Gauss–Seidel method always
applies the latest updated values during the iterative procedures, as demonstrated
in Table 7.2. The reason the Gauss–Seidel method is commonly known as the
successive displacement method is because the second unknown is determined
from the first unknown in the current iteration, the third unknown is determined from
the first and second unknowns, etc.

Table 7.2. Difference Between the Jacobi and Gauss–Seidel Iterative

Procedures Assuming the Initial Values u2 = u3 = u4 = 0 for the Problem

Outlined in Fig. 7.1

Jacobi Method Gauss–Seidel Method

https://www.sciencedirect.com/topics/engineering/jacobi-method

Jacobi Method Gauss–Seidel Method

(u2)step1=(5u3)10=0.5u3=0 (u2)step1=(5u3)10=0.5u3=0

(u3)step1=(5u2+5u4)10=0.5(u2+u

4)=0

(u3)step1=[5(u2)step1+5u4]10=0.5(u2)step1+0.

5u4=0

(u4)step1=(15+5u3)5=3+u3=3 (u4)step1=[15+5(u3)step1]5=3+(u3)step1=3

Although the three resulting values for both methods are identical in the first step,
you should be able to notice the subtle differences between the two methods. In the
Jacobi method, no updates are applied until the next step. For the Gauss–Seidel
method, the new u3 is calculated from the new u2 in the first equation, and
the new u4 is calculated from the new u2 and u3 in the first and second equations.
Note that while u2 also needs to be updated in the third equation, it just happens
that u2 is not present in the third equation for this particular
case. Table 7.3 and Fig. 7.3 show the iterative results and convergence steps of the
Gauss–Seidel method for the same 4-node, 3-element problem used for the Jacobi
method.

Table 7.3. Iterative Results From the Gauss–Seidel Successive Displacement

Method

Iteration U2 U3 U4

1 0 0 3

2 0 1.5 4.5

3 0.75 2.625 5.625

4 1.3125 3.46875 6.46875

5 1.734375 4.101563 7.101563

6 2.050781 4.576172 7.576172

7 2.288086 4.932129 7.932129

8 2.466064 5.199097 8.199097

9 2.599548 5.399323 8.399323

10 2.699661 5.549492 8.549492

Iteration U2 U3 U4

11 2.774746 5.662119 8.662119

12 2.831059 5.746589 8.746589

13 2.873295 5.809942 8.809942

14 2.904971 5.857456 8.857456

15 2.928728 5.893092 8.893092

16 2.946546 5.919819 8.919819

17 2.95991 5.939864 8.939864

18 2.969932 5.954898 8.954898

19 2.977449 5.966174 8.966174

20 2.983087 5.97463 8.97463

Figure 7.3. Convergence processes of using the Gauss–Seidel iterative

procedures for the 4-node, 3-element bar problem.

Comparing results obtained from the Jacobi and Gauss–Seidel methods for this
particular example problem, we observed that the convergence occurs much quicker

for the Gauss–Seidel method. Although this is true in most problems, some special
cases may have opposite results. In terms of computational efficiency, the
simultaneous displacement (Jacobi) method is perfectly designed for parallel
computing, because none of the variables within each iteration change until the
iteration is completed. As such, all variables need to be stored in memory until the
iteration is finished. On the other hand, the Gauss–Seidel method can replace each
variable as soon as a new update becomes available.

Other iterative procedures apply different and yet conceptually similar approaches.
Thus, no further discussion is made regarding other iterative solvers. As seen in the
two iterative procedures shown above, iterative methods slowly reach the final
solution rather than a large final step, as seen in the backward substitution
procedures of the Gauss elimination.

In summary, the direct method requires more in-core computer memory, but the
solutions are accurate. On the other hand, the indirect method reaches the final
solution gradually. However, as the level of convergence can be set by the users, a
lower precision may be desired in order to detect the potential trend of the changing
design variables much quicker than the direct method can provide.

Iterative Methods of Solution

Jonathan M. Blackledget, in Digital Signal Processing (Second Edition), 2006
9.1.2 The Gauss-Seidel Method

The Gauss-Seidel method involves updating the sub-diagonal elements as the
computation proceeds. The iteration process is

x1k+1=1a11b1−a12x2k−…−a1nxnk,x2k+1=1a22b2−a21x1k+1−…−a2nxnk,⋮xnk+1=1

annbn−an1x1k+1−…−ann−1xn−1k+1.

Solution to a System of Linear Algebraic Equations

Sandip Mazumder, in Numerical Methods for Partial Differential Equations, 2016

3.2.3 Gauss–Seidel method

The Gauss–Seidel method is also a point-wise iteration method and bears a strong
resemblance to the Jacobi method, but with one notable exception. In the Gauss–
Seidel method, instead of always using previous iteration values for all terms of the
right-hand side of Eq. (3.31), whenever an updated value becomes available, it is
immediately used. Thus, for the 3×3 example system considered earlier [Eq. (3.17)]
when x is determined using Eq. (3.17a), both y and z assume previous iteration
values. However, when y is determined using Eq. (3.17b), only z assumes a
previous iteration value. For x, the most recent value, which happens to be the
current iteration value (since it has already been updated), is used. In the context of
solution of a 2D PDE on a structured mesh, if the node by node update pattern (or
sweeping pattern) is from left to right and bottom to top, as shown in Fig. 3.3(a),
then, by the time it is node O‘s turn to get updated, nodes W and S have already
been updated, and these updated values must be used. Essentially, this implies that

https://www.sciencedirect.com/topics/engineering/gauss-elimination
https://www.sciencedirect.com/science/article/pii/B9781904275268500105
https://www.sciencedirect.com/book/9781904275268/digital-signal-processing
https://www.sciencedirect.com/science/article/pii/B9780128498941000032
https://www.sciencedirect.com/book/9780128498941/numerical-methods-for-partial-differential-equations
https://www.sciencedirect.com/topics/mathematics/gauss-seidel-method
https://www.sciencedirect.com/topics/mathematics/pointwise
https://www.sciencedirect.com/topics/mathematics/iteration-method
https://www.sciencedirect.com/topics/mathematics/jacobi-method
https://www.sciencedirect.com/topics/engineering/previous-iteration
https://www.sciencedirect.com/topics/mathematics/pde
https://www.sciencedirect.com/topics/engineering/structured-mesh

only two out of the four terms on the right-hand side of the update formula are
treated explicitly, as shown in Fig. 3.3(b). In general, the update formula for the
Gauss–Seidel method may be written as

Sign in to download full-size image

Figure 3.3. Pictorial Representation of the Gauss-Seidel Scheme

(a) left-to-right and bottom-to-top sweeping pattern in the Gauss–Seidel method,

and (b) explicitness versus implicitness with the sweeping pattern shown in (a).

The nodes denoted by solid circles are treated explicitly while nodes denoted by

hollow squares are treated implicitly.

(3.32)ϕk(n+1)=Qk−∑j=1j≠kNnbu,kajϕj(n+1)−∑j=1j≠kNnb,k−Nnbu,kajϕj(n)ak,

where Nnbu,k denotes the number of neighboring nodes to node k that have already
been updated, and Nnb,k − Nnbu,k is the number of neighboring nodes to node k that
have not been updated and are treated explicitly. It is clear from the preceding
discussion and Fig. 3.3(b) that the Gauss–Seidel scheme has a higher degree
of implicitness than the Jacobi method, and is, therefore, expected to yield faster
convergence. However, the added implicitness would manifest itself only if the
sweeping pattern is strictly adhered to, whatever that might be. Otherwise,
the convergence behavior may revert back to that of the Jacobi method. The
algorithm to use the Gauss–Seidel method for solution of the set of linear algebraic
equations arising out discretization of the 2D Poisson equation [Eq. (2.48)] is
presented below.
Algorithm: Gauss–Seidel method

Step 1: Guess values of ϕ at all nodes, i.e., ϕi,j ∀i=1,...,N and ∀j=1,...,M. We denote
these values as ϕ(0). If any of the boundaries have Dirichlet boundary conditions, the
guessed values for the boundary nodes corresponding to that boundary must be
equal to the prescribed boundary values.

Step 2: Set ϕ(n+1) = ϕ(n) and apply the Gauss–Seidel update formula, Eq. (3.32). For
the interior nodes, this

yields ϕi,j(n+1)=Si,j−⁡aEϕi+1,j(n)−aWϕi−1,j(n+1)−aNϕi,j+1(n)−aSϕi,j−1(n+1)aO,
where the link coefficients are given by Eq. (3.21). For boundary conditions other
than the Dirichlet type, appropriate values of the link coefficients must be derived
from the nodal equation at that boundary, and an update formula must be used.
Step 3: Compute the residual vector using ϕ(n+1), and then compute R2(n+1).

Step 4: Monitor convergence, i.e., check if R2(n+1) < ɛtol? If YES, then go to Step 5. If
NO, then go to Step 2.

Step 5: Stop iteration and postprocess the results.

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method
https://www.sciencedirect.com/topics/mathematics/convergence-behaviour
https://www.sciencedirect.com/topics/mathematics/linear-algebraic-equation
https://www.sciencedirect.com/topics/mathematics/linear-algebraic-equation
https://www.sciencedirect.com/topics/mathematics/discretization
https://www.sciencedirect.com/topics/mathematics/poisson-equation
https://www.sciencedirect.com/topics/mathematics/dirichlet-boundary-condition
https://www.sciencedirect.com/topics/mathematics/boundary-node
https://www.sciencedirect.com/topics/engineering/dirichlet
https://www.sciencedirect.com/topics/engineering/nodal-equation
https://www.sciencedirect.com/topics/mathematics/residual-vector

As opposed to the Jacobi method, in the Gauss–Seidel method, it is not necessary
to store values of ϕ at both previous and current iterations. The same array may
store a mixture of old and new values. As a matter of fact, in the update formula, it is
not necessary to distinguish between old and new values. Within the same array, old
values will be automatically replaced by new values as soon as they become
available, and subsequently used in the update formula. Code Snippet 3.5 for the
Gauss–Seidel scheme highlights some of these issues.

Code Snippet 3.5

Gauss–Seidel algorithm

Sign in to download full-size image

The fact that the same array can be used in the Gauss–Seidel method to store both

previous and current iteration values is an additional advantage of the Gauss–Seidel

method over the Jacobi method. As in the case of the Jacobi method, the Gauss–

Seidel method, being a point-wise iterative method, can be used for both structured

and unstructured meshes. The number of long operations in the Gauss–Seidel

method is identical to that of the Jacobi method. To highlight the differences,

especially in convergence behavior, between the Jacobi and the Gauss–Seidel

method, a numerical example is considered next.

Example 3.2

In this example we consider solution of the Poisson equation, Eq. (2.41), in a square

of unit length. The source term is assumed to be

Sϕ=2sinh[10(x−12)]+40(x−12)cosh[10(x−12)]+100(x−12)2sinh[10(x−12)]+ 2sinh[10(y

−12)]+40(y−12)cosh[10(y−12)]+100(y−12)2sinh[10(y−12)]+. 4(x2+y2)exp(2xy)

The boundary conditions are as follows:

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method

ϕ(0,y)=14sinh(−5)+(y−12)2sinh[10(y−12)]+1,ϕ(1,y)=14sinh(5)+(y−12)2sinh[10(y−12)]

+exp(2y)ϕ(x,0)=14sinh(−5)+(x−12)2sinh[10(x−12)]+1,ϕ(x,1)=14sinh(5)+(x−12)2sinh[1

0(x−12)]+exp(2x).

The analytical solution to system is given by

ϕ(x,y)=(x−12)2sinh[10(x−12)]+(y−12)2sinh[10(y−12)]+exp(2xy).

Equal mesh spacing is used in both directions. In this case, since we have Dirichlet

boundary conditions on all boundaries, finite difference equations are needed only

for the interior nodes, and these are given by Eq. (2.48). The resulting linear system

is solved using both the Jacobi and Gauss–Seidel methods for various mesh sizes:

41×41, 81×81, and 161×161. An initial guess equal to 0 was used for all interior

nodes. For convergence, the tolerance was set to 10−6. The figure below shows the

numerical solution obtained using the Jacobi method on the 81×81 mesh, as well as

the error between the analytical and the numerical solution for two different mesh

sizes.

Sign in to download full-size image

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method

Sign in to download full-size image

Sign in to download full-size image

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method
https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method

The error distributions [Top: 41 × 41, Bottom: 81 × 81] show that the error at each

node decreases by a factor of 4 when the grid spacing is halved (maximum error

goes from 0.1388 to 0.0348), once again highlighting the fact that the second-order

central difference scheme was used. The Gauss–Seidel method yielded identical

results. The plot below shows the convergence behavior of the two methods on the

aforementioned three different mesh sizes (41×41 is not labeled).

Sign in to download full-size image

The convergence plot clearly shows that the Gauss–Seidel method is roughly twice

as efficient as the Jacobi method. This is to be expected based on our earlier

contention that the more implicit the iterative scheme, the faster the convergence.

Since two out of the four off-diagonal terms are treated implicitly in the Gauss–Seidel

method, its convergence is superior. One important point to note is that in both

methods, the number of iterations increases by approximately a factor of four when

the number of nodes approximately quadruples. This implies that the CPU time

would increase by a factor of 16 with quadrupling of the number of nodes. Ideally, it

is desirable to have CPU time scaling linearly with the number of nodes. However,

this is not the case here. It roughly scales as K2, which is still better than the cubic

scaling of the Gaussian elimination algorithm. In Chapter 4, it will become clear why

the convergence deteriorates with an increase in the number of nodes (i.e., a finer

mesh). The actual CPU time taken by the Jacobi method on the 161×161 mesh was

about 25 s on an Intel core i7 processor.

In summary, two popular point-wise iteration schemes have been presented and
demonstrated. The Gauss–Seidel method was found to be twice as effective as the
Jacobi method. Both schemes have the advantage that they are simple to implement
and are applicable to any mesh topology. Although the convergence is slow, the cost
per iteration of both methods is also very low, making them attractive choices.
However, their major shortcoming is that both schemes scale poorly, and the
number of iterations go up by a factor of four when the number of nodes is increased

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method
https://www.sciencedirect.com/topics/mathematics/iterative-scheme
https://www.sciencedirect.com/topics/mathematics/gaussian-elimination
https://www.sciencedirect.com/topics/mathematics/mesh-topology

by a factor of four.

MATRIX NORMS AND APPLICATIONS

G.M. PHILLIPS, P.J. TAYLOR, in Theory and Applications of Numerical Analysis
(Second Edition), 1996

Algorithm 10.1

The Gauss-Seidel method for solving n linear equations. An initial
approximation X0 to the solution must be given, but this need not be very accurate.

We stop when ‖ xm+ 1 − xm ‖∞ is less than ∈ (see Problem 10.31).
set x = X0
repeat
 maxdiff: = 0
 for i := 1 to n
y:=(bi−∑j=1j≠inaijxj)/aii

 if | y − xi | < maxdiff then maxdiff: = | y − xi |
 xi := y
 next i

until maxdiff >∈

Basic Iterative Methods

William Ford, in Numerical Linear Algebra with Applications, 2015

20.2 The Gauss-Seidel Iterative Method

In the Gauss-Seidel method, start with approximate values x2(0),…,xn(0) if known;
otherwise choose x(0) = 0. Use these values to calculate x2(0),…,xn(0).
Use x1(1) and x1(1) to calculate x3(0),…,xn(0), and so forth. At each step, we are
applying new vector component values as soon as we compute them. The hope is
that this strategy will improve the convergence rate. Applying this method
with Equation 20.1, we have the iteration formula:
(20.3)x1(k)=1a11[b1−(∑j=2na1jxj(k−1))]

(20.4)xi(k)=1aii[bi−(∑j=1i−1aijxj(k)+∑j=i+1naijxj(k−1))], i=2,3,…,n−1

(20.5)xn(k)=1ann[bn−∑j=1n−1anjxj(k)]

Example 20.2

Use the matrix of Example 20.1 and apply the Gauss-Seidel method, with the
iteration defined by Equations 20.3–20.5. Begin with x(0) = 0, execute the first two
iterations in detail, continue for a total of 12 iterations, and compute the relative
residual.

https://www.sciencedirect.com/science/article/pii/B9780125535601500112
https://www.sciencedirect.com/book/9780125535601/theory-and-applications-of-numerical-analysis
https://www.sciencedirect.com/book/9780125535601/theory-and-applications-of-numerical-analysis
https://www.sciencedirect.com/topics/mathematics/gauss-seidel-method
https://www.sciencedirect.com/topics/mathematics/linear-equation
https://www.sciencedirect.com/science/article/pii/B978012394435100020X
https://www.sciencedirect.com/book/9780123944351/numerical-linear-algebra-with-applications

                 x1(1)=15(1)=0.2000,

x2(1)=14[−2−(−15+(1)0)]=−0.4500,x3(1)=−17[5−((1)15+6(−920))]=−1.0714                x1

(2)=15[1−((−1)(−920)+2(−1514))]=0.5386,x2(2)=14[−2−((−1)377700+(1)(−1514))]=−

0.0975,x3(3)=−17[5−((1)(377700)+6(−39400))]=−0.7209                             ⋮                x1(12)

=0.4837, x2(12)=−0.1794, x3(12)=−0.7989‖b−Ax(12)‖2‖b‖2=2.8183×10−7

If you compare this result with that of Example 20.1, it is clear that the Gauss-Seidel
iteration obtained higher accuracy in the same number of iterations.

High-performance computing for multiphysics problems

In Multiphysics Modeling, 2016

7.3.1 Gauss–Seidel versus Jacobi iteration methods

For the staggered Gauss–Seidel method, each physics model is solved sequentially.
This means that each physics solver will have all of the computing resources when it
is actively being solved while the others hang and wait for finishing and vice versa.
This means that each physics solver should use as many processors as possible
when it is active and to stay with minimum memory and processor usage when it is
idle. When the Gauss–Seidel iteration method is used, no waiting time is needed.
Each physics solver can maintain good scalability and efficiency if it uses the
maximum available computing processors when active. Figure 7.3 shows the
processors‘ usage and the data communication points (the dots) for the weak
coupling Gauss–Seidel iteration method.

https://www.sciencedirect.com/science/article/pii/B9780124077096000079
https://www.sciencedirect.com/book/9780124077096/multiphysics-modeling

On the other hand, the Jacobi iteration method allows the physics models involved in
the coupling to be solved simultaneously (in parallel). Figure 7.3 demonstrates the
processors‘ usages and the synchronization points for the Jacobi iteration method. In
this algorithm, the load balance needs to be considered before starting the solving
process; otherwise, a longer wait time will be needed at the synchronization load
transfer points. Because different physics models have different computational
complexity and matrix quality, balancing the loads to make all physics solvers to
finish one coupling iteration with closest time amount becomes a challenging work
for parallel computing. The Gauss–Seidel method is the easiest to use when each
physics solver still has good scalability to use the entire available processors (Figure
7.4).

Figure 7.4. Parallel Jacobi iteration method.

Design Algorithms and Guidelines

Amir Sharif Ahmadian, in Numerical Models for Submerged Breakwaters, 2016

Jacobi’s Method

Jacobi method is nearly similar to Gauss-Seidel method, except that each x-value is
improved using the most recent approximations to the values of the other variables.

https://www.sciencedirect.com/science/article/pii/B9780128024133000109
https://www.sciencedirect.com/book/9780128024133/numerical-models-for-submerged-breakwaters
https://www.sciencedirect.com/topics/engineering/jacobi-method

Considering similar set of equations as Gauss-Seidel method, we can similarly
define matrix A as before by assuming that the diagonal terms of matrix A have non-
zero values, then we can rewrite

(10.254)xik+1=bi−∑j≠iaijxjkaii,k=0,1,…

The iterative process is terminated when a convergence criterion is satisfied.
Unlike the Gauss-Seidel method, the previous estimations are not instantly replaced
by the new values in Jacobi method, thus the storage space required is twice the
Gauss-Seidel method and the convergence rapidness is lower.

Temporal Discretization

Jiri Blazek PhD, in Computational Fluid Dynamics: Principles and Applications (Third
Edition), 2015

LU-SGS on structured grids

On structured grids, the operators are defined as (see Refs. [50–52, 55, 73])
(6.51)ĀĀĀĀĀĀĀĀĀĀĀĀĪĀĀĀĀĀĀĀĀĀĀĀĀL=Ā++Āvi−1ΔSi−1/2I+Ā++Āvj−1ΔSj−1/2J

+Ā++Āvk−1ΔSk−1/2K,U=Ā−−Āvi+1ΔSi+1/2I+Ā−−Āvj+1ΔSj+1/2J+Ā−−Āvk+1ΔSk+1/2

K,D=ΩΔtĪ+Ā−−ĀvΔSi−1/2I+Ā−−ĀvΔSj−1/2J+Ā−−ĀvΔSk−1/2K+Ā++ĀvΔSi+1/2I+Ā++

ĀvΔSj+1/2J+Ā++ĀvΔSk+1/2K−∂(ΩQ→)∂W→.

For better readability, only those node indexes (or cell indexes in the case of a cell-
centered scheme) are shown in Eq. (6.51), which differ from i,j,k. The
superscripts i,j,k at ΔS indicate the direction in the computational space. The unit
normal vectors in the positive/negative flux Jacobians ĀĀ± and in the viscous flux
Jacobians ĀĀv are evaluated at the same side of the control volume like the
associated face areas ΔS. Note that the unit normal vectors are assumed to point
outwards of the control volume. In contrast, in various references it is supposed that
the unit normal vectors from opposite sides of the control volume point in the same
direction.

The viscous flux Jacobians in Eq. (6.51) are computed either numerically, or are
replaced by their TSL approximation, corresponding to Eq. (6.45). It is possible to
apply the TSL approximation in all computational coordinates, regardless of the
actual orientation of the boundary layer(s). A further simplification consists of
substituting the viscous flux Jacobians by the viscous spectral radii (Eq. (6.19)), that
is, ĀĀvΔS≈Λ^v, as suggested in [65].

The split convective flux Jacobians ĀĀ± are constructed in such a way that
the eigenvalues of the (+) matrices are all non-negative, and of the (−) matrices are
all non-positive. In general, the matrices are defined as [49]
(6.52)ĀĀĪĀ±ΔS=12ĀcΔS±rAĪ,rA=ωΛ^c,

where ĀĀc stands for the convective flux Jacobian (Section A.9) and Λ^c represents
the spectral radius of the convective flux Jacobian (given by Eq. (4.53) or (6.15)),
respectively. Note the similarity between the above approximation (6.52) and Eq.
(6.40), when the derivatives of ĀĀc are neglected. The factor ω in Eq. (6.52)
represents an overrelaxation parameter. It also determines the amount of implicit
dissipation and hence it influences the convergence properties of the scheme. The

https://www.sciencedirect.com/topics/engineering/convergence-criterion
https://www.sciencedirect.com/science/article/pii/B9780080999951000063
https://www.sciencedirect.com/book/9780080999951/computational-fluid-dynamics-principles-and-applications
https://www.sciencedirect.com/book/9780080999951/computational-fluid-dynamics-principles-and-applications
https://www.sciencedirect.com/topics/engineering/structured-grid
https://www.sciencedirect.com/topics/engineering/readability
https://www.sciencedirect.com/topics/engineering/jacobians
https://www.sciencedirect.com/topics/engineering/flux-jacobian
https://www.sciencedirect.com/topics/engineering/flux-jacobian
https://www.sciencedirect.com/topics/engineering/spectral-radius
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/eigenvectors
https://www.sciencedirect.com/topics/engineering/flux-jacobian
https://www.sciencedirect.com/topics/engineering/jacobian
https://www.sciencedirect.com/topics/engineering/convergence-property

factor can be chosen in the range 1 < ω ≤ 2. Higher values of ω increase the stability
of the LU-SGS scheme, but may slow down the convergence to steady state. The
definition of the Jacobians ĀĀ± in Eq. (6.52) ensures a diagonally dominant system
matrix, which is very important for the efficiency and robustness of the iterative
inversion procedure (6.50).

The splitting according to Eq. (6.52) allows together with averaged face vectors for a
simplified evaluation of the diagonal operator D
(6.53)ĪĀĀĀD=ΩΔt+ωΛ^cI+Λ^cJ+Λ^cKĪ+2ĀvIΔSI+ĀvJΔSJ+ĀvKΔSK−∂(ΩQ→)∂W→.

The spectral radii of the convective flux Jacobians Λ^c are given in Eq. (6.15). The
face areas and normal vectors are averaged in the respective I-, J-, or K-direction
according to Eq. (6.16). As we shall see immediately, this approximation helps to
reduce the operation count and the memory requirements significantly.

A distinguishing feature of the LU-SGS method is how the forward and the backward
sweep in Eq. (6.50) are carried out. In 2D, the sweeps are accomplished along
diagonal lines (i + j) = const. in computational space. This is depicted in Fig. 6.5 for
the forward sweep (first line of Eq. (6.50)). In this way, the off-diagonal terms
involved in the L and the U operator become known from the previous part of a
sweep (denoted by crosses in Fig. 6.5). In 3D, the implicit operator is inverted
on i + j + k = const. planes, as sketched in Fig. 6.6. Hence, the LU-SGS scheme can
be written as

Figure 6.5. Sweeping direction of the LU-SGS scheme in computational space: •

https://www.sciencedirect.com/topics/computer-science/diagonal-operator

denotes where the operator D is currently inverted (line i + j = const.); × denotes

the already updated values of L.

Figure 6.6. Diagonal plane of sweep in computational space for the implicit LU-

SGS scheme in 3D.

(6.54)DΔW→i,j,k(1)=−R→i,j,kn−LΔW→(1),DΔW→i,j,kn=DΔW→i,j,k(1)−UΔW→n.

As we can see from Eq. (6.54), the only term which needs to be inverted is the
diagonal term D. Thus, the LU-SGS methodology transforms the inversion of a
sparse banded matrix into the inversion of a block-diagonal matrix. Furthermore, if
the viscous flux Jacobians in Eq. (6.53) are approximated by the viscous spectral
radii, the operator D becomes a diagonal matrix (except for the source term).Hence,
the LU-SGS scheme requires a very small computational effort as compared to other
implicit schemes (e.g., the ADI scheme discussed previously). Furthermore, the
inversion of the diagonal operator can be carried out independently for each node
(cell) of the diagonal plane, which makes the scheme easy to vectorize. The indexes
of the nodes/cells on the diagonal planes can be obtained with the following pseudo-
code [79]:

DO plane = 1, nplanes
 DO k = 1, kmax
 DO j = 1, jmax
 DO i = 1, imax
 IF (i+j+k = plane+2) store indexes

https://www.sciencedirect.com/topics/engineering/diagonal-matrix
https://www.sciencedirect.com/topics/engineering/pseudocode
https://www.sciencedirect.com/topics/engineering/pseudocode

 ENDDO

 ENDDO

 ENDDO

ENDDO

The number of diagonal planes is: nplanes = imax + jmax + kmax − 2. Obviously, the
above code can be optimized for higher computational efficiency.
In order to avoid explicit evaluation and storage of the convective flux Jacobians
in L and U, the products ĀĀ±ΔW→n can be substituted by Taylor series
expansion of the fluxes [53]. Using Eq. (6.52), we can write
(6.55)ĀĪ(Ā±ΔS)ΔW→n≈12ΔF→cΔS±rAĪΔW→n

with the update of the convective fluxes
(6.56)ΔF→c=F→cn+1−F→cn.

The simplification given by Eq. (6.55) is possible due to the sweeping along diagonal
planes, since F→cn+1 is then known. This leads to a further significant decrease of
the numerical effort of the LU-SGS scheme.

The time step Δt can be computed in the same way as presented in Section 6.1.4,
using Eq. (6.14). However, it should be noted that the implicit LU-SGS scheme in Eq.
(6.49) represents an approximate Newton iteration in the case of Δt→∞ as stated by
Rieger and Jameson [53]. Thus, in general, CFL numbers of the order of 104 to
106 are used in practice for stationary flows. The convergence is then controlled by
the overrelaxation parameter ω. For the simulation of unsteady flows, we may
employ the formulation presented below in Section 6.3. Another possibility is to use
the modified version of the LU-SGS scheme described in Ref. [80].

Stability and Convergence of Iterative Solvers

Sandip Mazumder, in Numerical Methods for Partial Differential Equations, 2016

4.5.1 Geometric multigrid (GMG) method

The GMG method is best understood by considering the scenario where only two
grids – ―coarse‖ and ―fine‖ – are used. The two-grid algorithm serves as the core
framework for a general multigrid algorithm, as will be shown later. Prior to designing
any multigrid algorithm, it should be noted that the accuracy of the final solution must
be that of the fine mesh. The coarse mesh can only be used to accelerate the
convergence; not to compute the final solution. The two-grid algorithm is presented
next, with a discussion of the relevant concepts at each step. As an example, we
consider the solution of the 2D Poisson equation on a rectangular domain
with Dirichlet boundary conditions on all sides.

Step 1: Generating meshes and their relationships.

The first step in the execution of the GMG algorithm is generation and storage of the
mesh at various levels. Figure 4.3 shows the ―coarse‖ (C) and ―fine‖ (F) grids for a
rectangular domain in the case of a two-grid algorithm. Every coarse-grid node,
defined by the pair (I,J), has a corresponding fine-grid node sitting atop it, and is

https://www.sciencedirect.com/topics/engineering/taylor-series-expansion
https://www.sciencedirect.com/topics/engineering/taylor-series-expansion
https://www.sciencedirect.com/topics/engineering/convective-flux
https://www.sciencedirect.com/topics/computer-science/newton-iteration
https://www.sciencedirect.com/topics/engineering/unsteady-flow
https://www.sciencedirect.com/science/article/pii/B9780128498941000044
https://www.sciencedirect.com/book/9780128498941/numerical-methods-for-partial-differential-equations
https://www.sciencedirect.com/topics/engineering/multigrid
https://www.sciencedirect.com/topics/mathematics/poisson-equation
https://www.sciencedirect.com/topics/engineering/dirichlet-boundary-condition

defined by the pair (i,j). Therefore, the fine-grid indices may be expressed in terms of
the coarse-grid indices as follows:

Sign in to download full-size image

Figure 4.3. Coarse- and Fine-Grid Nodal Arrangements in a Two-Grid Algorithm

with Uniform Mesh Spacing

Coarse-grid nodes, denoted by crosses, are at the intersections of solid lines,

while fine-grid nodes, denoted by open circles, are at the intersections of both

dotted and solid lines.

(4.52)(i,j)=(2I−1,2J−1).

If the total number of fine-grid and coarse-grid nodes in the i (or j) direction are
denoted by NF (or MF) and NC (or MC), respectively, then the following relationships
are also true:
(4.53)NF=2NC−1MF=2MC−1.

Thus, for example, a 21×21 mesh should be combined with a 41×41 mesh to
develop a two-grid algorithm. It follows that the grid spacings for the coarse and fine
grids are given by

(4.54)ΔxC=LNC−1,⁡⁡⁡⁡ΔyC=HMC−1ΔxF=LNF−1,⁡⁡⁡⁡ΔyF=HMF−1.

The corresponding nodal equations on the coarse and fine grids are written as

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method
https://www.sciencedirect.com/topics/engineering/nodal-equation

(4.55a)2(ΔxF)2+2(ΔyF)2ϕi,jF−1(ΔxF)2ϕi+1,jF−1(ΔxF)2ϕi−1,jF−1(ΔyF)2ϕi,j+1F−1(ΔyF

)2ϕi,j−1F=−Si,j,

(4.55b)2(ΔxC)2+2(ΔyC)2ϕI,JC−1(ΔxC)2ϕI+1,JC−1(ΔxC)2ϕI−1,JC−1(ΔyC)2ϕI,J+1C−

1(ΔyC)2ϕI,J−1C=−SI,J.

Step 2: Set initial guess

The next step in the algorithm is to initialize the dependent variable on the fine grid.
Since the fine-grid solution is what we are ultimately interested in, it is sufficient to
initialize (guess) the solution at the fine-grid nodes. Let this solution be denoted
by ϕi,jF(0). If Dirichlet boundary conditions are used, the initial guess at the boundary
nodes should be set equal to the prescribed boundary value.
Step 3: Smoothing on fine grid

Next, the algebraic equations on the fine grid are solved using a solver of choice, but
only to partial convergence. While any solver, discussed in Chapter 3, may be used
for this purpose, it is important to choose one that is easy to implement and whose
computational workload per iteration is small. This is because in the context of the
GMG algorithm, the solver is not solely responsible for reducing the errors. Rather,
the multigrid framework is. In other words, the overall iteration count is not dictated
by the solver but rather by the multigrid treatment of the errors. The solver to be
used is also known as the smoother, and the operation of solving the fine-grid
equations to partial convergence is known as smoothing. Based on the criterion of
low computational workload per iteration, it is customary to use classical iterative
solvers for the smoothing operation rather than fully implicit solvers, such as the
Krylov subspace solvers. The Gauss–Seidel method is a popular choice as the
smoother for multigrid algorithms, primarily because of its extremely low workload
per iteration, its ease of implementation, and also the fact that it can be used for both
structured and unstructured mesh topologies.

It is clear that solving the fine-grid equations to full convergence in this step would be
tantamount to not using the multigrid method at all. Instead, the solution is taken only
to partial convergence. To the best of the author‘s knowledge, there is no reported
mathematical analysis that shows the optimum level of partial convergence that is
universally applicable to all problems. Generally, iterations are continued until
the R2F decreases by a factor of about two. Often, calculation and monitoring of the
scaled residual, as would be required if the residual were to be decreased by a factor
two, is completely bypassed, and one or two sweeps of Gauss–Seidel is executed
instead. This makes the implementation even easier.

At this point in the algorithm, the solution on the fine grid, ϕi,jF, contains errors due to
partial convergence. This error (equal to the difference between the exact numerical
solution and the solution at the current iteration) has several different wavelength
components. As discussed in Section 4.2.1, of these, the components that have
large wavelengths are the most difficult to damp out (or have their amplitudes
reduced). Therefore, instead of continuing with regular smoothing (Gauss–Seidel
iterations on the fine grid, for example), which would not specifically target the large
wavelength components, we transfer this error to a coarse grid and then smooth it on
the coarse grid so that they are reduced rapidly. In preparation for these actions, the
following step is executed next.

https://www.sciencedirect.com/topics/engineering/boundary-node
https://www.sciencedirect.com/topics/engineering/boundary-node
https://www.sciencedirect.com/topics/engineering/algebraic-equation
https://www.sciencedirect.com/topics/engineering/iteration-count
https://www.sciencedirect.com/topics/engineering/subspace
https://www.sciencedirect.com/topics/mathematics/mesh-topology

Step 4: Computation of residual on fine grid

The residual and L2Norm are computed on the fine grid using [R] F=[Q]−[A]F[ϕ]F,
and R2 F=[R]FT[R]F.

Step 5: Transfer of fine-grid residual to coarse grid (restriction)

The residual computed on the fine grid in Step 4 is next transfered to the coarse grid.
This process is known as restriction. Since every fine-grid node has a coarse-grid
node sitting atop it, the restriction operation simply involves copying the residuals on
the fine grid to an array (data structure) that stores residuals for the coarse grid. The
loops used to perform this transfer should run over the indices of the coarse grid and
Eq. (4.52) should be made use of to obtain corresponding fine-grid indices.
Henceforth, the residual transferred from the fine to the coarse grid will be denoted
by [R]C←F. For a more complex grid structure, the coarse- and fine-grid nodes may
not always overlap. In such a scenario, interpolation will be necessary to execute the
transfer process.

Step 6: Smoothing on coarse grid

The transferred residuals are next smoothed on the coarse grid with the specific
intent to damp out the large wavelength components of the error rapidly. This
operation entails solution of the equation [A]C[ϕ′]C=[R]C←F to partial convergence,
where [A]C is the coefficient matrix computed on the coarse mesh [see Eq. (4.55b)]
and [ϕ′]C is the predicted correction on the coarse mesh. As in Step 3, a solver with
a low computational workload and one that is easy to implement must be used. The
equation [A]C[ϕ′]C=[R]C←F essentially represents the governing linear system in
correction form (see Section 3.2.1). Generally, tighter tolerance or more sweeps
(typically two or three, as opposed to one) is needed in this step than in Step 3 to
obtain an accurate enough prediction of the correction. The Gauss–Seidel method is
also a commonly used method for this step.

Step 7: Transfer of coarse-grid correction to fine grid (prolongation)

The correction obtained on the coarse grid, [ϕ']C, is next transferred to the fine grid.
This process is known as prolongation. Execution of the prolongation step involves
interpolation since all fine-grid nodes do not have coarse-grid nodes sitting atop
them. The transfer of [ϕ']C can be classified into three categories. For the fine-grid
nodes that have coarse grid-nodes sitting atop them, the correction is transferred
directly. For the remaining nodes, two possibilities exist, as shown in Fig. 4.4.

https://www.sciencedirect.com/topics/mathematics/interpolation
https://www.sciencedirect.com/topics/engineering/coefficient-matrix
https://www.sciencedirect.com/topics/engineering/prolongation

Sign in to download full-size image

Figure 4.4. Two Interpolation Scenarios in the Two-Grid Algorithm

(a) Two-point interpolation for fine-grid nodes placed along coarse-grid lines, and

(b) four-point interpolation for fine-grid nodes offset from coarse-grid lines.

Coarse-grid nodes are denoted by crosses, while fine-grid nodes are denoted by

open circles.

Based on the two possibilities depicted in Fig. 4.4, either two-point or four-point
interpolation is needed to compute fine-grid values from coarse-grid values, as
follows:
Two-point:

(4.56a)ϕ′i+1,j F←C=ϕ′I,J C+ϕ′I+1,J C2,⁡⁡⁡⁡⁡⁡ϕ′i,j+1 F=ϕ′I,J C+ϕ′I,J+1 C2,

Four-point:

(4.56b)ϕ′i+1,j+1 F←C=ϕ′I,J C+ϕ′I+1,J C+ϕ′I,J+1 C+ϕ′I+1,J+1 C4.

The transferred correction is denoted by [ϕ′]F←C. In the general case of
a nonuniform or curvilinear mesh, distance-weighted interpolation must be used.
Distance-weighted interpolation is discussed in detail in Chapter 7.
Step 8: Update of fine-grid solution

The fine-grid solution, obtained in Step 3, is next updated by adding to it the
correction obtained in Step 7: [ϕ]F=[ϕ]F+[ϕ′]F←C. At this juncture, one complete
cycle of the multigrid (two-grid) algorithm has been completed.

Step 9: Check for convergence

Convergence is checked by monitoring the residual computed at Step 4, i.e.,
is ɛR2 F<ɛtol? Although the residual computed in Step 4 is lagging behind by one
iteration, it is preferable to use it to monitor convergence to avoid computation of the
residual twice within the same iteration. If the convergence criterion has not been

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method
https://www.sciencedirect.com/topics/mathematics/nonuniform
https://www.sciencedirect.com/topics/engineering/convergence-criterion

satisfied, Steps 3–9 must be repeated.

The two-grid algorithm, just described, may be thought of as a detour from the
original Gauss–Seidel method (assuming that Gauss–Seidel is the smoother and
only one sweep of Gauss–Seidel is performed in Step 3) in which, rather than arrive
directly at Step 9 from Step 5, a detour is taken, wherein the errors are smoothed
further with particular emphasis on reducing the large-wavelength components of the
errors. Whether or not this strategy is really effective will be examined through an
example problem shortly. Assuming that the strategy is effective and results in
significant reduction in iteration count, it is important at this point to tally the number
of extra floating-point operations introduced by the extra steps. For solution of a
2D PDE, Step 3 requires four multiplications and one division per node if one sweep
of the Gauss–Seidel method is used, resulting in 5NFMF long operations. Another
five multiplications per node are needed to compute the residual in Step 4, bringing
the total to 10NFMF long operations. Step 5 does not require any arithmetic
operation. Step 6 requires five long operations per coarse grid node per sweep.
However, the number of coarse grid nodes is approximately one-fourth that of the
fine grid nodes. Assuming that three sweeps are used, Step 6 effectively requires
3.75NFMF long operations, resulting in a total of 13.75NFMF long operations. The
prolongation operation of Step 7 requires approximately 0.75NFMF long operations to
execute [Eq. (4.56)]. Thus, the total number of long operations needed by the two-
grid GMG algorithm is approximately 14.5NFMF. In contrast, the core Gauss–Seidel
algorithm would require approximately 10NFMF long operations. Thus, the workload
increase per iteration in the two-grid GMG is about 50%. As long as the iteration
count is reduced by more than 50%, the two-grid GMG algorithm is expected to be
beneficial from the overall computational time standpoint. An example is considered
next to assess the pros and cons of the two-grid algorithm.

Example 4.9

The solution to the problem, considered in Examples 3.2–3.6, is attempted here with

the two-grid algorithm. The following grid combination is used: 81×81 (coarse) with

161×161 (fine). The residual plot for the 81×81 (coarse)/161×161 (fine) grid

combination is shown below along with the residuals of the pure Gauss–Seidel

method executed on the 161×161 grid separately.

https://www.sciencedirect.com/topics/mathematics/pde
https://www.sciencedirect.com/topics/engineering/arithmetic-operation
https://www.sciencedirect.com/topics/engineering/arithmetic-operation

Sign in to download full-size image

The geometric two-grid algorithm results in tremendous reduction in the iteration

count, requiring only 4450 iterations as opposed to the 57,786 iterations required by

the pure Gauss–Seidel method – a factor of 13 reduction. As far as computational

times are concerned, the two-grid algorithm on the 81/161 grid combination required

5.42 seconds, compared to 24.1 seconds required by Gauss–Seidel – a factor of

4.44 reduction. Clearly, the computational times did not scale exactly as the

iterations. As discussed earlier, this is due to the increased workload per iteration.

The benefit of using the multigrid method is best understood by closer examination

of the errors before and after the coarse-grid smoothing operation. The figures below

show the convergence error after one sweep (first figure below) of Gauss–Seidel

(Step 3), and also shortly after the prolongation and update (second figure below)

step (Step 8).

It is worth recalling that Steps 4–8 represent a detour (the multigrid smoothing of the

errors) from the main Gauss–Seidel algorithm.

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method

Sign in to download full-size image

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method

Sign in to download full-size image

The error contours exhibit a noticeable reduction in the error after the coarse-grid
smoothing operation. In particular, the sharp peaks and valleys have been
significantly reduced: the maximum positive error has been reduced from 38.2 to
26.1, while the maximum negative error has been reduced from −25.4 to −16.3.

The preceding example illustrates the benefits of targeted reduction of the large-
wavelength components of the error as a means to accelerating overall
convergence. However, this remarkable idea would remain largely underutilized if
one were to stop at using just two grids. General-purpose multigrid algorithms make
use of the basic two-grid idea to construct a hierarchical error reduction framework
using many grid levels. The sequence of smoothing–restriction–correction–
prolongation steps that are followed in such algorithms is referred to as multigrid
scheduling. While a large variety of multigrid scheduling algorithms are available, the
three most commonly used ones are the V-cycle, the W-cycle, and the full multigrid
(FMG) cycle.

In order to understand the role of additional (beyond two) grid levels in the GMG
algorithm, we first consider the V-cycle multigrid algorithm, depicted in Fig. 4.5(a).
For additional clarity, a three-grid algorithm with all relevant details is shown in Fig.
4.5(b). In the discussion to follow, instead of using superscripts ―C‖ and ―F‖ to denote
grid levels, we will use the grid level numbers shown in Fig. 4.5(a).

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method

Sign in to download full-size image

Figure 4.5. The V-cycle GMG Algorithm

(a) The scheduling sequence, and (b) detailed work plan in the context of a

three-grid algorithm. ―S‖ refers to the smoothing operation, ―C‖ refers to the error

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method

correction operation, and ―U‖ refers to the final solution update. The solid arrows

represent restriction steps, while the dotted arrows represent prolongation steps.

The V-cycle multigrid algorithm commences with iterative solution of the linear
system to partial convergence on the finest grid (Grid 1). The residual is then
transferred to the next finest grid (Grid 2) and smoothed using an iterative solver. If,
rather than using a few sweeps on Grid 2, iterations were continued, the solution for
the correction, [ϕ']2, would be a lot more accurate and devoid of the large-

wavelength components corresponding to Grid 2. However, as we already know, this
would require a large number of iterations on Grid 2, and would defeat the purpose
of using a multigrid method. Instead, we could envision using another multigrid
algorithm to damp out the errors on Grid 2. Of course, that would require at least one
more grid, i.e., Grid 3. Essentially, this leads to the idea of using a multigrid algorithm
within the original multigrid algorithm, as depicted in Fig. 4.5(b). If this process were
to be continued, we would end up having several multigrid algorithms nested within
each other, leading to the concept of recursion. If programmed in a modular fashion,
with advanced programming languages, it is possible to use recursion with relative
ease. When does the process of using additional grid levels stop? Recalling that the
objective is to obtain an accurate prediction of the correction on the coarsest mesh
level, the process may be stopped when the mesh is so coarse that a direct solution
of the system [A][ϕ']=[R] is possible using Gaussian elimination. This scenario for
terminating the process is the best-case or ideal scenario. In practice, the number of
grid levels is often determined by the overheads incurred in interpolation, storage of
multiple grids, and other factors. It is worth remembering that practical problems are
rarely solved on a rectangular domain with perfectly orthogonal (Cartesian) meshes,
and therefore, one has to actually generate multiple meshes and
construct interpolation functions prior to executing the multigrid algorithm. Hence, in
practice, the number of grid levels is often not sufficient and the coarsest grid is not
coarse enough to enable direct solution of the linear system. In order to highlight
some of the aforementioned issues, Example 4.9 is repeated with multiple grid levels
and the V-cycle.

Example 4.10

The solution to the problem considered in Example 4.9 is repeated here with the V-

cycle GMG algorithm. The finest grid considered is a 161×161 mesh, and the grid is

progressively coarsened by a factor of two to obtain additional grid levels. The table

below summarizes the number of iterations and the computational time required by

the overall algorithm as a function of the number of grid levels. The CPU times

reported are for computations performed on a 2.2 GHz Intel core i7 processor with 8

GB of RAM. The tolerance used for convergence was 10−6. The residuals for the

four cases are also shown in the figure below.

https://www.sciencedirect.com/topics/engineering/recursion
https://www.sciencedirect.com/topics/mathematics/gaussian-elimination
https://www.sciencedirect.com/topics/engineering/interpolation-function

Grid levels Iterations CPU time (s)

2 (161,81) 4450 5.42

3 (161,81,41) 947 1.28

4 (161,81,41,21) 219 0.32

5 (161,81,41,21,11) 66
0.10

The results shown in the table above and the figure below clearly illustrate the

remarkable power of the multigrid method. With the addition of each grid level the

number of iterations decreases by approximately a factor of 4 to 5. Of course, the

CPU time does not scale exactly with the number of iterations, as expected, due to

increased workload per iteration, especially when the number of grid levels used is

relatively large.

Sign in to download full-size image

One of the remarkable properties of the multigrid algorithm is its scaling. Of the
solvers considered in Chapter 3, the best scaling was produced by the CG solver,
where the number of iterations required for convergence increased by a factor of
approximately two when the number of nodes was quadrupled (see Example 3.8).
Such scaling is typical of the CG or conjugate gradient square (CGS) method, in
which the workload (or computational time) scales as K3/2 [1]. If the problem
considered in Example 4.10 is computed on a 81×81 grid with the V-cycle GMG
method with 4 grid levels, convergence is attained in 62 iterations. This is quite

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method

remarkable because it implies that the same problem can be solved on a 81×81 grid,
as well as a 161×161 grid with roughly the same number of iterations (the 161×161
grid required 66 iterations) by simply using an additional coarse-grid correction.
Since the workload on the coarsest mesh is negligible, it implies that the total
workload scales approximately as the number of nodes, since the number of
iterations remains more or less unchanged between the 81×81 and the 161×161
grid. Thus, the multigrid algorithm is fundamentally an O(K) algorithm, in which the
workload (or computational time) is directly proportional to the number of
unknowns, K. As mentioned in Chapter 3, linear scaling with problem size is the
best-case scenario as far as the performance of iterative solvers is concerned.
Other multigrid scheduling cycles aim to improve upon the performance of the V-
cycle. The W-cycle, and the FMG cycles are depicted schematically in Fig. 4.6. The
W-cycle scheduling makes use of the fact that the computational workload at the
coarsest grid levels is almost negligible. Therefore, rather than execute the upward
prolongation steps all the way to the finest grid, a second set of restriction and
smoothing operations are performed on the coarse-grid levels prior to executing the
complete prolongation-update branch. Analysis shows that this strategy generally
leads to a reduction in the iteration count. The FMG algorithm starts at the coarsest
grid level. The solution at the coarsest grid is interpolated (prolongated) to the next
fine grid and is used as an initial guess for the smoothing on that grid. The error is
then restricted back to the coarsest mesh and in the next step, two successive
prolongation steps are executed using two grid levels above the coarsest grid
followed by two successive restriction steps, and so on. The FMG algorithm
essentially executes a series of inverted two-grid V-cycles with growing sizes of V. It
is believed to yield superior performance to either the V- or W-cycles [3,4], and is the
best option for applications where adaptive grid refinement is used. Other multigrid
schedules, such as the F-cycle (F stands for flexible) and the saw-tooth cycle, are
also used. For a description of these, and for further in-depth reading on the multigrid
method, the reader is referred to texts focused specifically on multigrid
methods [3,4].

Rate of Convergence

In numerical analysis, the speed at which a convergent sequence approaches its
limit is called the rate of convergence. Although strictly speaking, a limit does not
give information about any finite first part of the sequence, this concept is of practical
importance if we deal with a sequence of successive approximations for an iterative
method as then typically fewer iterations are needed to yield a useful approximation
if the rate of convergence is higher. This may even make the difference between
needing ten or a million iterations.Similar concepts are used
for discretization methods. The solution of the discretized problem converges to the
solution of the continuous problem as the grid size goes to zero, and the speed of
convergence is one of the factors of the efficiency of the method. However, the
terminology in this case is different from the terminology for iterative methods.

The rate of convergence of an iterative method is represented by mu (Î¼) and is
defined as such:

Suppose the sequence{xn} (generated by an iterative method to find an
approximation to a fixed point) converges to a point x, then

limn->[infinity] = |xn+1-x|/|xn-x|[alpha]=Î¼, where Î¼â‰≦0 and Î±(alpha)=order of
convergence.

In cases where Î±=2 or 3 the sequence is said to have quadratic and cubic
convergence respectively. However in linear cases i.e. when Î±=1, for the sequence
to converge Î¼ must be in the interval (0,1). The theory behind this is that for
En+1â‰¤Î¼En to converge the absolute errors must decrease with each
approximation, and to guarantee this, we have to set 0<Î¼<1.

In cases where Î±=1 and Î¼=1 and you know it converges (since Î¼=1 does not tell
us if it converges or diverges) the sequence {xn} is said to converge sublinearly i.e.
the order of convergence is less than one. If Î¼>1 then the sequence diverges.
If Î¼=0 then it is said to converge superlinearly i.e. it‘s order of convergence is higher
than 1, in these cases you change Î± to a higher value to find what the order of
convergence is. In cases where Î¼ is negative, the iteration diverges.

UNIT-IV

Interpolation and approximation

Finite Differences

The finite difference method (FDM) is an approximate method for solving partial
differential equations. It has been used to solve a wide range of problems. These
include linear and non-linear, time independent and dependent problems. This
method can be applied to problems with different boundary shapes, different kinds
of boundary conditions, and for a region containing a number of different materials.
Even though the method was known by such workers as Gauss and Boltzmann, it
was not widely used to solve engineering problems until the 1940s. The
mathematical basis of the method was already known to Richardson in 1910 [1]
and many mathematical books such as references [2 and 3] were published which
discussed the finite difference method. Specific reference concerning the treatment
of electric and magnetic field problems is made in [4]. The application of FDM is not
difficult as it involves only simple arithmetic in the derivation of the discretization
equations and in writing the corresponding programs. During 1950–1970 FDM was
the most important numerical method used to solve practical problems ([5–7]). With
the development of high speed computers having large scale storage capability
many numerical solution techniques appeared for solving partial differential
equations. However, due to the ease of application of the finite difference method it
is still a valuable means of solving these problems

Polynomial interpolation

Here we shall work with polynomials. These are functions with the following

form:f(x)=a0+a1x+⋯+anxn,where n is any nonnegative integer, a0,...,an are any

fixed numbers, with an≠0. Here are some terminology related to polynomials:

1. n is called the degree,

2. a0,...,an are called the coefficients

3. a0 is called the constant term

Polynomials have many uses in mathematics. Here we shall learn about polynomial

interpolation. The following example introduces this.

EXAMPLE: Suppose that f(x) is a polynomial of degree 2
with f(1)=2, f(2)=5, and f(4)=2. Find the formula of f(x).

SOLUTION: Since f(x) has degree 2, it must be of the formf(x)=a+bx+cx2,where the

coefficient a,b,c are to be determined. Since f(1)=2,2=a+b×1+c×12=a+b+c.Similarly,

we get two other equations:5=a+2b+4c2=a+4b+16cSolving all the three equations

together we get a=−4,b=15/2,c=−3/2.

In this example we say that f interpolates the three points(1,2),(2,5) and (4,2).We

also call f an interpolating polynomial for this set of 3 points.

Here we see that there is exactly one polynomial of degree 2 that interpolates these

3 points. A polynomial of degree 2 has 2+1=3 unknown coefficients, a,b and c. We

solved for these from the 3 equations. This can be generalized to the following

result.TheoremSuppose that we

have n+1 points:(x0,y0),(x1,y1),...,(xn,yn),where x0,...,xn are distinct numbers (no

such condition on the yi's). Then there is exactly one polynomial f of degree ≤n that

interpolates these n+1 points, i.e.,f(xi)=yi for 0≤i≤n.

Proof: The conditionsf(xi)=yi for 0≤i≤ncan be written as a linear system in terms of
the coefficients of the polynomial:Vb=y,where b=(b0,b1,...,bn)′ is the vector of
coefficients to be

determined, y=(y0,...,yn) andV=[1x0x20⋯xn01x1x21⋯xn1⋮⋮⋮⋮⋮1xnx2n⋯xnn].One may
check by induction that V has determinant|V|=∏i>j(xi−xj).Since the xi's are all
distinct, this implies that V is nonsingular, completing the proof. By the way, V is an
important matrix that is useful elsewhere also. It is called a Vandermonde
matrix. [QED]

In this page we shall learn to solve the following problem:

Given (n+1) points (x0,y0),...,(xn,yn), how to find the unique interpolating

polynomial f(x) with degree ≤n?

We shall always assume that the xi's are distinct. (Why is this a natural assumption?)

One possible way is to imitate the proof of the above theorem, and solve a linear

system of n+1 equations in n+1 unknowns. But this is not efficient, because it fails to

take into account the Vandermonde structure of the coefficient matrix. We shall now

learn some simpler ways of finding f(x).

Lagrange's formula

Lagrange devised a technique by which one may immediately write down the

interpolating polynomial. We shall explore his intuitive approach through a few

examples.

EXAMPLE: Can you quickly write down a nonzero polynomial that vanishes
at 1, 3 and 100?

SOLUTION: Typically the simplest answer to flash across our minds,

is (x−1)(x−3)(x−100). You can also multiply this with any other polynomial to get

another answer. Indeed, all answers may be obtained in this way.

Lagrange started with this simple idea, and extended it to the following problem.

EXAMPLE: Same problem as before, but now with the two extra conditions: f must
have degree ≤3 and also f(50)=1.

SOLUTION: Since we still need f to vanish at 1, 3 and 100, we must start building

from (x−1)(x−3)(x−100). This already has degree 3. So no further growth is allowed.

We can only multiply it with some constant. At x=50 this has

value (50−1)(50−3)(50−100). To bring it down to 1, we have to divide it by this to get

the unique answer:f(x)=(x−1)(x−3)(x−100)(50−1)(50−3)(50−100).

This motivates the definition of Lagrangian polynomial s. If x0,...,xn are

any n+1 distinct numbers, then for i=0,1,...,n, the i-th Lagrangian polynomial is

defined

asLi(x)=(x−x0)×⋯×(x−xi−1)×(x−xi+1)×⋯×(x−xn)(xi−x0)×⋯×(xi−xi−1)×(xi−xi+1)×⋯×(x

−xn).

Here the numerator is the product of all terms of the form (x−xj) for j≠i. The

denominator is the same as the numerator, except that x is replaced by xi.

EXERCISE: Show that Li(x) is the unique ≤n degree polynomial
with Li(xi)=1 and Li(xj)=0 for all j≠i.

Let us compute the Li's explicitly in an example.

EXAMPLE: Consider the following xi's: x0=1, x1=3 and x2=−2. Find the Lagrangian
polynomials.

SOLUTION: HereL0(x)=(x−3)×(x−(−2))(1−3)×(1−(−2))=(6+x−x2)/6.

Similarly, check thatL1(x)=(x2+x−2)/10,

andL2(x)=(x2−4x+3)/15.

Observe that this example does not mention the yi's at all, since they are not

required to compute the Li's.

Lagrange's interpolationConsider the original problem of

interpolating (x0,y0),...,(xn,yn). The unique interpolating polynomial of degree ≤n is

given byf(x)=y0L0(x)+y1L1(x)+⋯+ynLn(x).

This is called the Lagrangian interpolating polynomial.

Proof: It is easy to see why this f(x) answers our need.
At x=xif(xi)=y0L0(xi)+y1L1(xi)+⋯+ynLn(xi)=y0×0+y1×0+⋯+yi×1+⋯+yn×0=yi

[QED]

EXAMPLE: Let us apply Lagrange interpolation to the following table:

i xi yi
0 1 12
1 3 10
2 -2 -15

We have already computed the polynomials L0,L1 and L2. So the unique degree 3

interpolating polynomial

isf(x)=y0L0(x)+y1L1(x)+y2L2(x)=12(6+x−x2)/6+10(x2+x−2)/10−15(x2−4x+3)/15=−2x

2+7x+7.

EXERCISE: Find the interpolating polynomial for the following points using
Lagrange's method.

i xi yi
0 1 0
1 3 -1
2 -2 3
3 0 100

EXAMPLE: Show thatL0(x)+L1(x)+⋯+Ln(x)=1.

Let f(x) denote the left hand side. Notice that it is the Lagrangian interpolating

polynomial ify0=y1=⋯=yn=1.

Thus f(x) is a polynomial of degree ≤n interpolating the (n+1) points(x0,1),...,(xn,1).

Now consider the constant polynomialg(x)≡1.

It is a polynomial of degree ≤n that interpolates the same (n+1) points.

Since there is exactly one polynomial of degree ≤n interpolating (n+1) given points,

we must havef(x)=g(x),

that is,L0(x)+L1(x)+⋯+Ln(x)=1.

Newton's divided difference method

Lagrange's method is one way to compute the interpolating polynomial for a given

set of points. Here is another method called Newton's divided difference method.

Remember that there is exactly one polynomial of degree ≤n interpolating n+1 given

points. So whether we use Lagrange's method or Newton's method we shall always

come to the same answer. Only the way we compute it will be different, not the final

answer.

As before we are working with the points (x0,y0),...,(xn,yn), where all the xi's are

distinct. We want to find the unique interpolating polynomial, f(x), of degree ≤n. Thus,

we have thatf(xi)=yi for 0≤i≤n.

We define the divided differences of f as follows.

1. 0-th order divided difference:f[x0]=f(x0)

2. 1-st order divided difference:f[x1,x0]=f[x1]−f[x0]x1−x0

3. 2-nd order divided difference:f[x2,x1,x0]=f[x2,x1]−f[x1,x0]x2−x0

4. 3-rd order divided difference:f[x3,x2,x1,x0]=f[x3,x2,x1]−f[x2,x1,x0]x3−x0

In general, for 1≤k≤n, we have th k-th order divided

difference:f[xk,xk−1,…,,x1,x0]=f[xk,…,x1]−f[xk−1,…,x0]xk−x0

Notice the following points:

1. The divided differences are computed step by step: the 0-th order divided
differences are just the given f(xi)'s. The 1-st order divided differences are
computed from the 0-th order divided differences. The 2-nd order is computed
from the 1-st order, and so on. This step-by-step computation is best done in
a tabular way, as we discuss below.

2. To compute the divided differences we need only the value of f(xi)'s at the
given xi's. So even without knowing the formula of f we can compute the
divided differences.

3. We are not assuming that the xi's are ordered.

Divided difference table

The following tabular format of the divided differences is called the divided

difference table. Here we have shown it for n=2.

x0 f[x0]
 f[x1,x0]
x1 f[x1] f[x2,x1,x0]
 f[x2,x1]
x2 f[x2]
We compute this table starting from the left and proceeding toward right.

EXAMPLE: Consider these values:

xi 0 1 3 4
yi -5 1 25 55
Compute the divided difference table for it.

SOLUTION:

0 -5
 6
1 1 2
 12 1
3 25 6
 30
4 55
For instance, the 6 at the top of the 3rd column is obtained as6=1−(−5)1−0.

The last 1 is computed as1=6−24−0.

EXERCISE: Compute the divided difference table for the following points.

i 0 1 2 3 4
xi 2 3 -2 1 0
yi 22 -12 4 5 5

Newton’s forward and backward formula

Interpolation is the technique of estimating the value of a function for any
intermediate value of the independent variable, while the process of computing the
value of the function outside the given range is called extrapolation.
Forward Differences : The differences y1 – y0, y2 – y1, y3 – y2, ……, yn – yn–1
when denoted by dy0, dy1, dy2, ……, dyn–1 are respectively, called the first forward
differences. Thus the first forward differences are :

NEWTON’S GREGORY FORWARD INTERPOLATION FORMULA :

This formula is particularly useful for interpolating the values of f(x) near the beginning
of the set of values given. h is called the interval of difference and u = (x – a) / h,
Here a is first term.

Example :
Input : Value of Sin 52

Output :

Value at Sin 52 is 0.788003
Below is the implementation of newton forward interpolation method.

 C++

 Java

 Python3

 C#

 PHP

filter_none

edit

play_arrow

brightness_4
// CPP Program to interpolate using

// newton forward interpolation

#include <bits/stdc++.h>

usingnamespacestd;

// calculating u mentioned in the formula

floatu_cal(floatu, intn)

{

 floattemp = u;

 for(inti = 1; i < n; i++)

 temp = temp * (u - i);

 returntemp;

}

// calculating factorial of given number n

intfact(intn)

{

 intf = 1;

 for(inti = 2; i <= n; i++)

 f *= i;

 returnf;

}

intmain()

{

 // Number of values given

 intn = 4;

 floatx[] = { 45, 50, 55, 60 };

 // y[][] is used for difference table

 // with y[][0] used for input

 floaty[n][n];

 y[0][0] = 0.7071;

 y[1][0] = 0.7660;

 y[2][0] = 0.8192;

 y[3][0] = 0.8660;

 // Calculating the forward difference

 // table

 for(inti = 1; i < n; i++) {

 for(intj = 0; j < n - i; j++)

 y[j][i] = y[j + 1][i - 1] - y[j][i - 1];

 }

 // Displaying the forward difference table

 for(inti = 0; i < n; i++) {

 cout << setw(4) << x[i]

 << "\t";

 for(intj = 0; j < n - i; j++)

 cout << setw(4) << y[i][j]

 << "\t";

 cout << endl;

 }

 // Value to interpolate at

 floatvalue = 52;

 // initializing u and sum

 floatsum = y[0][0];

 floatu = (value - x[0]) / (x[1] - x[0]);

 for(inti = 1; i < n; i++) {

 sum = sum + (u_cal(u, i) * y[0][i]) /

 fact(i);

 }

 cout << "\n Value at "<< value << " is "

 << sum << endl;

 return0;

}

Output:

 45 0.7071 0.0589 -0.00569999 -0.000699997

 50 0.766 0.0532 -0.00639999

 55 0.8192 0.0468

 60 0.866

 Value at 52 is 0.788003

Backward Differences :

The differences y1 – y0, y2 – y1, ……, yn – yn–1 when denoted by dy1, dy2, ……,
dyn, respectively, are called first backward difference. Thus the first backward
differences are :

NEWTON’S GREGORY BACKWARD INTERPOLATION FORMULA :

This formula is useful when the value of f(x) is required near the end of the table. h is
called the interval of difference and u = (x – an) / h, Here an is last term.
Example :
Input : Population in 1925

Output :

Value in 1925 is 96.8368

Below is the implementation of newton backward interpolation method.

 C++

 Java

 C#

 PHP

filter_none

edit

play_arrow

brightness_4
// CPP Program to interpolate using

// newton backward interpolation

#include <bits/stdc++.h>

usingnamespacestd;

// Calculation of u mentioned in formula

floatu_cal(floatu, intn)

{

 floattemp = u;

 for(inti = 1; i < n; i++)

 temp = temp * (u + i);

 returntemp;

}

// Calculating factorial of given n

intfact(intn)

{

 intf = 1;

 for(inti = 2; i <= n; i++)

 f *= i;

 returnf;

}

intmain()

{

 // number of values given

 intn = 5;

 floatx[] = { 1891, 1901, 1911,

 1921, 1931 };

 // y[][] is used for difference

 // table and y[][0] used for input

 floaty[n][n];

 y[0][0] = 46;

 y[1][0] = 66;

 y[2][0] = 81;

 y[3][0] = 93;

 y[4][0] = 101;

 // Calculating the backward difference table

 for(inti = 1; i < n; i++) {

 for(intj = n - 1; j >= i; j--)

 y[j][i] = y[j][i - 1] - y[j - 1][i - 1];

 }

 // Displaying the backward difference table

 for(inti = 0; i < n; i++) {

 for(intj = 0; j <= i; j++)

 cout << setw(4) << y[i][j]

 << "\t";

 cout << endl;

 }

 // Value to interpolate at

 floatvalue = 1925;

 // Initializing u and sum

 floatsum = y[n - 1][0];

 floatu = (value - x[n - 1]) / (x[1] - x[0]);

 for(inti = 1; i < n; i++) {

 sum = sum + (u_cal(u, i) * y[n - 1][i]) /

 fact(i);

 }

 cout << "\n Value at "<< value << " is "

 << sum << endl;

 return0;

}

Output:

 46

 66 20

 81 15 -5

 93 12 -3 2

 101 8 -4 -1 -3

 Value at 1925 is 96.8368

This article is contributed by Shubham Rana. If you like GeeksforGeeks and would
like to contribute, you can also write an article using contribute.geeksforgeeks.org or
mail your article to contribute@geeksforgeeks.org. See your article appearing on the
GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more
information about the topic discussed above.

Attention reader! Don‘t stop learning now. Get hold of all the important DSA concepts
with the DSA Self Paced Course at a student-friendly price and become industry
ready.

CENTRAL DIFFERENCE FORMULA

Consider a function f(x) tabulated for equally spaced points x0, x1, x2, . . ., xn with
step length h. In many problems one may be interested to know the behaviour

https://auth.geeksforgeeks.org/profile.php?user=shubham_rana_77
http://www.contribute.geeksforgeeks.org/
https://practice.geeksforgeeks.org/courses/dsa-self-paced?utm_source=geeksforgeeks&utm_medium=article&utm_campaign=gfg_article_dsa_content_bottom

of f(x) in the neighbourhood of xr (x0 + rh). If we take the transformation X = (x -
(x0 + rh)) / h, the data points for X and f(X) can be written as

x X f(X)
 x0 + (r - 2)h -2 f-2
 x0 + (r -1)h -1 f-1
 x0 + rh 0 f0
 x0 + (r + 1)h 1 f1
 x0 + (r + 2)h 2 f2

now the central difference table can be generated using the definition of central
differences:

 f(X + h/2) - f(X - h/2)

i = (E1/2 - E-1/2)fi = (fi +1/2 - fi -1/2)

2fi = (E1/2 - E-1/2) (fi +1/2 - fi -1/2)

= f1 - f0 - f0 + f-1 = f1 - 2f0 + f-1

Now the central difference table is

Xi fi i
2fi

3fi
4fi

-2 f-2

 -3/2
(= f-1 - f-2)

-1 f-1

2f-1
(= -1/2- -

3/2)

 -1/2
(= f0 - f-1)

3f-1/2
(= 2f0 -

2f-

1)

0 f0

2f0
(= 1/2- -

1/2)

4f0
(= 3f1/2 -

3f-1/2)

 1/2
(= f1 - f0)

3f1/2
(= 2f1 -

 2f0)

1 f1

2f1
(= 3/2-

1/2)

 3/2
(= f2 - f1)

2 f2

Gauss and Stirling formulae :

Consider the central difference table interms of forward difference operator and
with Sheppard's Zigzag rule

-3 f-3
 -3

-2 f-2 2f-3
 -2 3f-3

-1 f-1 2f-2 4f-3
 -1 3f-2 5f-3

0 f0 2f-1 4f-2 6f-3

 0 3f-1 5f-2
1 f1 2f0 4f-1

 1 3f0
2 f2 2f1

 2
3 f3

Now by divided difference formula along the solid line interms of forward difference
operator
(f[x0, x1 . . . xr]

 = rfx / r!) is

f(x) = f0+

0+

 x(x-
1) 2f0+

x(x-
1)(x+1) 3f0+

 x(x-
1)(x+1)(x-2) 4f0+

 x(x-1)(x+1)(x-
2)(x+2) 5f0

+ . .
.

2! 3! 4! 5!
or

f(x) = f0 + (
x

) 0 + (
x

) 2f-1 + (
x+1

) 3f-1 + (
x+1

) 4f-1 + (
x+2

) 5f-2 + . . .
1 2 3 4 5

is called the Gauss forward difference formula.

Now if we repeat the same along dotted line weget

f(x) = f0 + (
x

) -1 + (
x+1

) 2f-1 + (
x+1

) 3f-2 + (
x+2

) 4f-2 + . . .
1 2 3 4

is called the Gauss backward difference formula.

Now changing these two formulae to notation produces respectively

f(x) = f0 + (
x

) 1/2 + (
x

) 2f0 + (
x+1

) 3f1/2 + (
x+1

) 4f0 + . . .
1 2 3 4

f(x) = f0 + (
x

) -1/2 + (
x+1

) 2f0 + (
x+1

) 3f-1/2+ (
x+2

) 4f0 + . . .
1 2 3 4

Now by adding these two expression and dividing by two gives

f(x) = f0 + (
x

) 0 +
x

(
x

) 2f0 + (
x+1

) 3f0+
x

(
x+1

) 4f0 + . . .
1 2 1 3 4 3

or

f(x) = x 0 + 1 2f0 + 1 x(x2- 3f0+ 1 x2(x2- 4f0 + . .

f0 + 1! 2! x2 3! 12) 4! 12) .
where the averaging operator is defined as

 =
 f(x + h) - f(x - h)

2
This formula is called the Stirling's interpolation formula.

Example :

Using Stirling's formula compute f(12.2) from the data

x f(x) X
10 0.23967 -2
11 0.28060 -1
12 0.31788 0
13 0.35209 1
14 0.38368 2

X fx = 105f(x) x
2fx

3fx
4fx

-2 23967
 4093

-1 28060 -365
 3728 58
0 31788 -307 -13
 3421 45
1 35209 -262
 3159
2 38368

f0.2 = f0 + (
x

) 0 +
x

(
x

) 2f0 + (
x+1

) 3f0+
x

(
x+1

) 4f0 1 2 1 3 4 3

3728 +
3421 +

0.2 0.2 (-
307)

 +
(1.2)(0.2)(-

0.8)
58 +
45 +

0.2
1.2 0.2 (-

0.8)
(-

13)
2 2 3! 2 4 3!

= 31788 + 714.9 - 6.14 - 1.648 + 0.208

= 32495
-5fx = 0.32495

Advantages :

1. Stirling's formula decrease much more rapidly than other difference
formulae hence considering first few number of terms itself will give
better accuracy.

2. Forward or backward difference formulae use the oneside information
of the function where as Stirling's formula uses the function values on
both sides of f(x).

Bessel formula :

Combining the Gauss forward formula with Gauss Backward formula based on a
zigzag line just one unit below the earlier one gives the Bessel formula. This is
equivalent to

f(x) = f1 + (
x-1

) 1/2 + (
x

) 2f1 + (
x

) 3f1/2 + (
x+1

) 4f1 + (
x+1

) 5f1/2 + . . .
1 2 3 4 5

Then the Bessel formula is

f(x)
= 1/2+

(x-
1/2) 1/2+ (

x
) 2f1/2+

(1/3)(x-
1/2)(

x
) 3f1/2+ (

x+1
) 4f1/2

+(1/5)(x-
1/2)(

x+1
) 5f1/2 +...

2 2 4 4
set x = z + 1/2

fz+1/2 1/2+ z 1/2+
z2-
1/4

 1
2f1/2+

z(z2-
1/4)

 1
3f1/2+

(z2-
1/4)(z2-
9/4)

 1
4f1/2

+z(z2-
1/4)(z2-
9/4)

 1
5f1/2 +...

2! 3! 4! 5!

for z = 0 we have

f1/2 = 1/2 -

 1 2f1/2 +
 3 4f1/2. .

. 8 128
Now by choosing proper choise of origin x, one can take the central difference
formula in the range
0 < x < 1 or in -1/2 < x < 1/2.

Example :

Compute 344.51/3 for the equation f(x) = x1/3

x ux = 105f(x) x
2ux

342 6993191
 6809

343 7000000 -13
 6796

344 7006796 -13
 6783

345 7013579 -13
 6770

346 7020349 -13
 6757

347 7027106

u1/2 =
14020375

 -
 1

(-13) = 7010189
2 8

Gauss’s Forward Method:

The gaussian interpolation comes under the Central Difference Interpolation
Formulae. Suppose we are given the following value of y=f(x) for a set values of x:

X: x0 x1 x2 ………. xn
Y: y0 y1 y2 ………… yn
The differences y1 – y0, y2 – y1, y3 – y2, ……, yn – yn–1 when denoted by Δy0, Δy1,
Δy2, ……, Δyn–1 are respectively, called the first forward differences. Thus the first
forward differences are :

Δy0 = y1 – y0

and in the same way we can calculate higher order differences.

And after the creating table we calculate the value on the basis of following formula:

Now, Let‘s take an example and solve it for better understanding.

Problem:

From the following table, find the value of e1.17 using Gauss‘s Forward formula.

x 1.00 1.05 1.10 1.15 1.20 1.25 1.30

ex 2.7183 2.8577 3.0042 3.1582 3.3201 3.4903 3.6693

Solution:

We have

yp = y0 + pΔy0 + (p(p-1)/2!).Δy2

0 + ((p+1)p(p-1)/3!).Δy3
0 + …

where p = (x1.17 – x1.15) / h
and h = x1 – x0 = 0.05
so, p = 0.04
Now, we need to calculate Δy0, Δy2

0, Δy3
0 … etc.

Put the required values in the formula-
yx = 1.17 = 3.158 + (2/5)(0.162) + (2/5)(2/5 – 1)/2.(0.008) …
yx = 1.17 = 3.2246

Code : Python code for implementing Gauss’s Forward Formula

filter_none

edit
play_arrow
brightness_4
Python3 code for Gauss's Forward Formula

importing library

importnumpy as np

function for calculating coefficient of Y

defp_cal(p, n):

 temp =p;

 fori inrange(1, n):

 if(i%2==1):

 temp *(p -i)

 else:

 temp *(p +i)

 returntemp;

function for factorial

deffact(n):

 f =1

 fori inrange(2, n +1):

 f *=i

 returnf

storing available data

n =7;

x =[1, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30];

y =[[0fori inrange(n)]

 forj inrange(n)];

y[0][0] =2.7183;

y[1][0] =2.8577;

y[2][0] =3.0042;

y[3][0] =3.1582;

y[4][0] =3.3201;

y[5][0] =3.4903;

y[6][0] =3.6693;

Genrating Gauss's triangle

fori inrange(1, n):

 forj inrange(n -i):

 y[j][i] =np.round((y[j +1][i -1] -y[j][i -1]),4);

Printing the Triangle

fori inrange(n):

 print(x[i], end ="\t");

 forj inrange(n -i):

 print(y[i][j], end ="\t");

 print("");

Value of Y need to predict on

value =1.17;

implementing Formula

sum=y[int(n/2)][0];

p =(value -x[int(n/2)]) /(x[1] -x[0])

fori inrange(1,n):

 # print(y[int((n-i)/2)][i])

 sum=sum+(p_cal(p, i) *y[int((n-i)/2)][i]) /fact(i)

print("\nValue at", value,

 "is", round(sum, 4));

Output :
1 2.7183 0.1394 0.0071 0.0004 0.0 0.0 0.0001

1.05 2.8577 0.1465 0.0075 0.0004 0.0 0.0001

1.1 3.0042 0.154 0.0079 0.0004 0.0001

1.15 3.1582 0.1619 0.0083 0.0005

1.2 3.3201 0.1702 0.0088

1.25 3.4903 0.179

1.3 3.6693

Value at 1.17 is 3.2246

Attention geek! Strengthen your foundations with the Python Programming
Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts
with the Python DS Course.

Stirling’s

Stirling’s formula, also called Stirling’s approximation, in analysis, a method for
approximating the value of large factorials (written n!; e.g., 4! = 1 × 2 × 3 × 4 = 24)
that uses the mathematical constants e (the base of the natural logarithm) and π.

The formula is given by

The Scottish mathematician James Stirling published his formula in Methodus
Differentialis sive Tractatus de Summatione et Interpolatione Serierum
Infinitarum (1730; ―Differential Method with a Tract on Summation and Interpolation
of Infinite Series‖), a treatise on infinite series, summation, interpolation, and
quadrature.

For practical computations, Stirling‘s approximation, which can be obtained from his

formula, is more useful: lnn! ≅ nlnn − n, where ln is the natural logarithm. Using
existing logarithm tables, this form greatly facilitated the solution of otherwise tedious
computations in astronomy and navigation.

William L. Hosch

LEARN MORE in these related Britannica articles:

https://practice.geeksforgeeks.org/courses/Python-Foundation?utm_source=geeksforgeeks&utm_medium=article&utm_campaign=GFG_Article_Bottom_Python_Foundation
https://practice.geeksforgeeks.org/courses/Python-Foundation?utm_source=geeksforgeeks&utm_medium=article&utm_campaign=GFG_Article_Bottom_Python_Foundation
https://practice.geeksforgeeks.org/courses/Data-Structures-With-Python?utm_source=geeksforgeeks&utm_medium=article&utm_campaign=GFG_Article_Bottom_Python_DS
https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/factorial
https://www.britannica.com/science/logarithm
https://www.britannica.com/biography/James-Stirling-British-mathematician
https://www.merriam-webster.com/dictionary/Infinite
https://www.merriam-webster.com/dictionary/treatise
https://www.britannica.com/science/infinite-series
https://www.merriam-webster.com/dictionary/facilitated
https://www.britannica.com/science/astronomy
https://www.britannica.com/technology/navigation-technology
https://www.britannica.com/editor/William-L-Hosch/6481
https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/analysis-mathematics

analysis

Analysis, a branch of mathematics that deals with continuous change and with

certain general types of processes that have emerged from the study of continuous

change, such as limits, differentiation, and integration. Since the discovery of the

differential and integral calculus by Isaac Newton and Gottfried Wilhelm Leibniz at

the…

factorial

Factorial, in mathematics, the product of all positive integers less than or equal to a

given positive integer and denoted by that integer and an exclamation point. Thus,

factorial seven is written 7!, meaning 1 × 2 × 3 × 4 × 5 × 6 × 7. Factorial zero is…

Bessel functions, first defined by the mathematician Daniel Bernoulli and then

generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential

equation

{\displaystyle x^{2}{\frac {d^{2}y}{dx^{2}}}+x{\frac {dy}{dx}}+\left(x^{2}-\alpha

^{2}\right)y=0}for an arbitrary complex number α, the order of the Bessel function.

Although α and −α produce the same differential equation, it is conventional to define

different Bessel functions for these two values in such a way that the Bessel

functions are mostly smooth functions of α.

The most important cases are when α is an integer or half-integer. Bessel functions

for integer α are also known as cylinder functions or the cylindrical

harmonics because they appear in the solution to Laplace's equation in cylindrical

coordinates. Spherical Bessel functions with half-integer α are obtained when

the Helmholtz equation is solved in spherical coordinates.

Bessel functions of the first kind: Jα

Bessel functions of the first kind, denoted as Jα(x), are solutions of Bessel's
differential equation that are finite at the origin (x = 0) for integer or positive α and
diverge as x approaches zero for negative non-integer α. It is possible to define the
function by its series expansion around x = 0, which can be found by applying
the Frobenius method to Bessel's equation:[3]

where Γ(z) is the gamma function, a shifted generalization of the factorial function to
non-integer values. The Bessel function of the first kind is an entire function if α is an
integer, otherwise it is a multivalued function with singularity at zero. The graphs of
Bessel functions look roughly like oscillating sine or cosine functions that decay
proportionally to (see also their asymptotic forms below), although their roots are not
generally periodic, except asymptotically for large x. (The series indicates
that −J1(x) is the derivative of J0(x), much like −sin x is the derivative of cos x; more

https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/factorial
https://www.britannica.com/science/factorial
https://www.britannica.com/science/factorial
https://www.britannica.com/science/factorial
https://en.wikipedia.org/wiki/Daniel_Bernoulli
https://en.wikipedia.org/wiki/Friedrich_Bessel
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Half-integer
https://en.wikipedia.org/wiki/Cylindrical_harmonics
https://en.wikipedia.org/wiki/Cylindrical_harmonics
https://en.wikipedia.org/wiki/Laplace%27s_equation
https://en.wikipedia.org/wiki/Cylindrical_coordinates
https://en.wikipedia.org/wiki/Cylindrical_coordinates
https://en.wikipedia.org/wiki/Spherical_Bessel_functions
https://en.wikipedia.org/wiki/Helmholtz_equation
https://en.wikipedia.org/wiki/Spherical_coordinates
https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Frobenius_method
https://en.wikipedia.org/wiki/Bessel_function#cite_note-p360-3
https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Factorial
https://en.wikipedia.org/wiki/Entire_function
https://en.wikipedia.org/wiki/Multivalued_function

generally, the derivative of Jn(x) can be expressed in terms of Jn ± 1(x) by the
identities below.)

Plot of Bessel function of the first kind, Jα(x), for integer orders α = 0, 1, 2

For non-integer α, the functions Jα(x) and J−α(x) are linearly independent, and are
therefore the two solutions of the differential equation. On the other hand, for integer
order n, the following relationship is valid (the gamma function has simple poles at
each of the non-positive integers):[4]

This means that the two solutions are no longer linearly independent. In this case,
the second linearly independent solution is then found to be the Bessel function of
the second kind, as discussed below.

Bessel's integrals[edit]

Another definition of the Bessel function, for integer values of n, is possible using an
integral representation:[5]

Another integral representation is:[5]

This was the approach that Bessel used, and from this definition he derived several
properties of the function. The definition may be extended to non-integer orders by
one of Schläfli's integrals, for Re(x) > 0.

https://en.wikipedia.org/wiki/Bessel_function#Properties
https://en.wikipedia.org/wiki/Bessel_function#cite_note-4
https://en.wikipedia.org/w/index.php?title=Bessel_function&action=edit§ion=4
https://en.wikipedia.org/wiki/Bessel_function#cite_note-Temme-5
https://en.wikipedia.org/wiki/Bessel_function#cite_note-Temme-5
https://en.wikipedia.org/wiki/File:Bessel_Functions_(1st_Kind,_n=0,1,2).svg

Everett’s formula

It is well known [1], [2], [6], [7], [8], [9], that it is possible in the case of univariate
tables for use with Everett's formula, to eliminate columns of higher order differences
with practically no loss of accuracy by modification of one or more lower order
differences through a process known as throwback. That the same thing is possible
with bivariate tables (and, presumably, with other multivariate tables) seems not to
have been recorded in print. Everett's formula for bivariate interpolation, as far as
fourth order differences, can be written as follows, using symbolism similar to that of
[2] (see also [3]

Interpolation with unequal intervals

Langrange’s Interpolation

This is again an Nth degree polynomial approximation formula to the function f(x),
which is known at discrete points xi, i = 0, 1, 2 . . . Nth. The formula can be derived
from the Vandermonds determinant but a much simpler way of deriving this is from
Newton's divided difference formula. If f(x) is approximated with an Nth degree
polynomial then the Nth divided difference of f(x) constant and (N+1)th divided
difference is zero. That is

f [x0, x1, . . . xn, x] = 0
From the second property of divided difference we can write

f0

 +

fn

fx

 =
0

+ . . .
+

(x0 - x1) . . . (x0 - xn)(x0 -
x)

(xn - x0) . . . (xn - xn-1)(xn -
x)

(x - x0) . . . (x -

xn)
or

 (x - x1) . . . (x - xn) (x - x0) . . . (x - xn-1)
f(x) = f0 + . . . + fn
 (x0 - x1) . . . (x0 - xn) (xn - x0) . . . (xn - xn-1)

n

(

 n

)fi

| | x - xj

j = 0 (xi - xj)
i = 0 1

Since Lagrange's interpolation is also an Nth degree polynomial approximation
to f(x) and the Nth degree polynomial passing through (N+1) points is unique hence
the Lagrange's and Newton's divided difference approximations are one and the
same. However, Lagrange's formula is more convinent to use in computer
programming and Newton's divided difference formula is more suited for hand
calculations.

Example : Compute f(0.3) for the data

x 0 1 3 4 7
f 1 3 49 129 813

using Lagrange's interpolation formula (Analytic value is 1.831)

 (x - x1) (x - x2)(x- x3)(x - x4) (x - x0)(x - x1) (x - x2)(x - x3)
f(x) = f0+ . . . + f4
 (x0 - x1) (x0 - x2)(x0 - x3)(x0 - x4) (x4 - x0)(x4 - x1)(x4 - x2)(x4 - x3)

 (0.3 - 1)(0.3 - 3)(0.3 - 4)(0.3 - 7) (0.3 - 0)(0.3 - 3)(0.3 - 4)(0.3 - 7)
 = 1+ 3 +
 (-1) (-3)(-4)(-7) 1 x (-2)(-3)(-6)

(0.3 - 0)(0.3 - 1)(0.3 - 4)(0.3 - 7) (0.3 - 0)(0.3 - 1)(0.3 - 3)(0.3 - 7)
 49 + 129 +

3 x 2 x (-1)(-4) 4 x 3 x 1 (-3)

(0.3 - 0)(0.3 - 1)(0.3 - 3)(0.3 - 4)
 813

7 x 6 x 4 x 3
 = 1.831

NEWTON'S DIVIDED DIFFERENCE FORMULA

Let us assume that the function f(x) is linear then
we have

f(xi) - f(xj)

 (xi - xj)
where xi and xj are any two tabular points, is independent of xi and xj. This ratio is
called the first divided difference of f(x) relative to xi and xj and is denoted by f [xi,
xj]. That is

f [xi, xj]
=

f(xi) - f(xj) = f [xj,
xi]

(xi - xj)
Since the ratio is independent of xi and xj we can write f [x0, x] = f [x0, x1]

f(x) - f(x0)

 = f [x0, x1]
(x - x0)

f(x) = f(x0) + (x - x0) f [x0, x1]

=
1

|
f(x0)

 x0 -
x
|

f1 - f0
f0x1 - f1x0

 =

 x
+

x - x0 f(x1)
 x1 -

x
x1 - x0

x1 - x0

So if f(x) is approximated with a linear polynomial then the function value at any
point x can be calculated by using f(x) P1(x) = f(x0) + (x - x1) f [x0, x1]

where f [x0, x1] is the first divided difference of f relative to x0 and x1.

Similarly if f(x) is a second degree polynomial then the secant slope defined above is
not constant but a linear function of x. Hence we have

f [x1, x2] - f [x0, x1]

x2 - x0
is independent of x0, x1 and x2. This ratio is defined as second divided difference
of f relative to x0, x1 and x2. The secind divided difference are denoted as

f [x1, x2] - f [x0, x1]

f [x0, x1, x2] =

x2 - x0
Now again since f [x0, x1,x2] is independent of x0, x1 and x2 we have

f [x1, x0, x] = f [x0, x1, x2]
f [x0, x] - f [x1, x0]

 = f [x0, x1, x2]

x - x1

f [x0, x] = f [x0, x1] + (x - x1) f [x0, x1, x2]

f [x] - f [x0]

=

f [x0, x1] + (x - x1) f [x0, x1,
x2]

x - x0

f(x) = f [x0] + (x - x0) f [x0, x1] + (x - x0) (x - x1) f [x0, x1, x2]

This is equivalent to the second degree polynomial approximation passing through
three data points

x0 x1 x2
f0 f1 f2

So whenever f(x) is approximated with a second degree polynomial, the value
of f(x) at any point x can be computed using the above polynomial.
In the same way if we define recursively kth divided difference by the relation

f [x1, x2, . . ., xk] - f [x0, x1, . . ., xk-

1]
f [x0, x1, . . .,
xk]

=

xk - x0
The kth degree polynomial approximation to f(x) can be written as

f(x) = f [x0] + (x - x0) f [x0, x1] + (x - x0) (x - x1) f [x0, x1, x2]
 + . . . + (x - x0) (x - x1) . . . (x - xk-1) f [x0, x1, . . ., xk].

This formula is called Newton's Divided Difference Formula. Once we have the
divided differences of the function f relative to the tabular points then we can use the
above formula to compute f(x) at any non tabular point.

Computing divided differences using divided difference table: Let us consider
the points (x1, f1), (x2, f2), (x3, f3) and (x4, f4) where x1, x2, x3 and x4 are not
necessarily equi-distant points then the divided difference table can be written as

xi fi f [xi, xj] f [xi, xj, xk] f [xi, xj, xk, xl]

x1 f1

f
[x

1,
x2

]
=

f2 - f1

x2 - x1

x2 f2

f [x2, x3] - f [x1, x2]
f [x1, x2,x3] =

x3 - x1

f
[x

2,
x3

]
=

f3 - f2

x3 - x2

f [x2, x3,x4] - f [x1, x2,x3]
f [x1, x2,x3,x4] =

x4 - x1

x3 f3

f [x3, x4] - f [x2, x3]
f [x2, x3,x4] =

x4 - x2

f
[x

3,
x4

]
=

f4 - f3

x4 - x3

x4 f4

Example : Compute f(0.3) for the data

x 0 1 3 4 7
f 1 3 49 129 813

using Newton's divided difference formula.

Solution : Divided difference table

xi fi
0 1

 2
1 3 7

 23 3
3 49 19

 80 3

4 129 37
 228

7 813

Now Newton's divided difference formula is

f(x) = f [x0] + (x - x0) f [x0, x1] + (x - x0) (x - x1) f [x0, x1, x2] + (x - x0) (x - x1) (x - x2)f
[x0, x1, x2, x3]

f(0.3) = 1 + (0.3 - 0) 2 + (0.3)(0.3 - 1) 7 + (0.3) (0.3 - 1) (0.3 - 3) 3

 = 1.831

Since the given data is for the polynomial f(x) = 3x3 - 5x2 + 4x +1 the analytical value
is f(0.3) = 1.831

The analytical value is matched with the computed value because the given data is
for a third degree polynomial and there are five data points available using which one
can approximate any data exactly upto fourth degree polynomial.

Properties :

1. If f(x) is a polynomial of degree N, then the Nth divided difference of f(x) is a
constant.

Proof : Consider the divided difference of xn

(x1+ h)n - xn

n h xn-1+ . . .

n

=

=

x + h - x

h

 = a polynomial of degree (n - 1)

Also since divided difference operator is a linear operator, of any Nth degree
polynomial is an (N-1)th degree polynomial and second is an (N-2) degree
polynomial, so on the Nth divided difference of an Nth degree polynomial is a
constant.

2. If x0, x1, x2 . . . xn are the (n+1) discrete points then the Nth divided difference is
equal to

f0

fn
f[x0, x1, x2 . . . xn] = + . . . +

(x0 - x1) . . . (x0 - xn)

(xn - x0) . . . (xn - xn-1)

Proof : If n = 0 f(x0) = f(x0) hence the result is true let us assume that the result is
valid upto n = k

f0

fk
f[x0, x1, . . . xk]

=

 + . . .
+

(x0 - x1) . . . (x0 -

xk)
(xk - x0) . . . (xk - xk-

1)

Consider the case n = k + 1

f[x1, x2, . . . xk+1] - f[x0, x1, . . . xk]

f[x0, x1, . . . xk, xk+1] =

(xk+1 - x0)

 1

[

f1 fk+1

]
=

 + . . .
+

 (xk+1 - x0)
(x1 - x2) . . . (x1 -

xk+1)

(xk+1 - x1) . . . (xk+1 -
xk)

 1

[
f0 fk

] + . . . +

 (xk+1 - x0) (x0 - x1) . . . (x0 - xk) (xk - x0) . . . (xk - xk-1)

 f0

 +

f1

(

1

1

)

 fk+1

=

 -

 +...+

(x0-x1)...(x0-

xk+1)
(x1-x2)...(x1 -
xk)(xk+1 - x0)

x1-xk+1
x1-x0

(xk+1-
x0)...(xk+1-xk)

 f0

 +

f1
fk+1

=

+ . . .
+

(x0 - x1) . . . (x0 -

xk+1)
(x1 - x0) (x1 - x2) . . . (x1 -

xk+1)

(xk+1 - x0) . . . (xk+1 -
xk)

3. Sheppard Zigzag rule :

Consider the divided difference table for the data points (x0, f0), (x1, f1), (x2,
f2) and (x3, f3)

In the difference table the dotted line and the solid line give two differenct paths
starting from the function values to the higher divided difference's posssible to the
function values. The Sheppard's zigzag rule says the function value at any non-
tabulated from the dotted line or from the solid line are same provided the order
of xi are taken in the direction of the zigzag line. That is any f(x) through the dotted
line can be approximated as

f(x) = f0 + (x - x0) f [x0, x1] + (x - x0) (x - x1) f [x0, x1,x2] + (x - x0) (x - x1) (x - x2)f [x0,
x1, x2, x3].

Similarly f(x) over the solid line is euivalent to

f(x) = f2 + (x - x2) f [x1, x2] + (x - x2) (x - x1) f [x1, x2,x3] + (x - x2) (x - x1) (x - x3)f [x0,
x1, x2, x3].

Example : Find f(1.5) from the data points

x 0 0.5 1 2
f(x) 1 1.8987 3.7183 11.3891

f(1.5) along the dotted line is
f(1.5) = 1 + 1.5 x 1.7974 + 1.5 (1) x 1.8418 + (1.5) (1) (0.5) x 0.4229
 = 6.770

Similarly f(1.5) along the solid line is
f(1.5) = 3.7183+(1.5 - 1)x3.6392+(1.5 - 1)(1.5 - 0.5)x2.6877+(1.5 -1)(1.5 - 0.5)(1.5 -
2)x0.4229
 = 6.770

The data is given for f(x) = x2 + ex and the analytical value for f(1.5) = 6.7317

Hermite’s Interpolation Approximation of function by Taylor’s series and

Chebyshev polynomial

If the first derivatives of the function are known as well as the function value at each
of the node points , i.e., we have available a set of values , then the function can be

interpolated by a polynomial of degree

(46)

In principle, the coefficients could be obtained by solving a linear equation system

of the same number of equations:

Example

The Hermite interpolation is carried out to the same function used in previous
examples, with the result shown in the figure below, together with the basis
polynomials . As the first order derivative is available as well as the function
value at each node point , the interpolation matches the given function very well
(almost identical on the plots), with an error , which is much reduced from of all

methods previously discussed based only on .

The Matlab code that implements the Hermite interpolation method is listed below.

function [H a b]=HIL(u,x,y,dy) % Hermite interpolation (Lagrange)
 % u: discrete data points;
 % vector x: [x_1,...,x_n]
 % vector y: [y_1,...,y_n]
 % vector dy: [y'_1,...,y'_n]
 n=length(x); % number of interpolating points
 k=length(u); % number of discrete data points
 li=ones(n,k); % Lagrange basis polynomials
 a=zeros(n,k); % basis polynomials alpha(x)

 b=zeros(n,k); % basis polynomials beta(x)
 H=zeros(1,k); % Hermie interpolation polynomial H(x)
 for i=1:n
 dl=0; % derivative of Lagrange basis
 for j=1:n
 if j~=i
 dl=dl+1/(x(i)-x(j));
 li(i,:)=li(i,:).*(u-x(j))/(x(i)-x(j));
 end
 end
 l2=li(i,:).^2;
 b(i,:)=(u-x(i)).*l2; % basis polynomial alpha(x)
 a(i,:)=(1-2*(u-x(i))*dl).*l2; % basis polynomial beta(x)
 H=H+a(i,:)*y(i)+b(i,:)*dy(i); % Hermite polynomial H(x)
 end
end

This function with sample points can then be interpolated by the Newton polynomial
method. For example, if , then the Newton's polynomial of degree can be found to
be:

It can be verified that indeed for all and . Similar to the Newton polynomial method

discussed previously, the divided difference coefficients can be obtained recursively,

with the only difference that there exist repeated copies at each point , where the

divided difference can be found by

The divided difference coefficients in the expression of above can be recursively

generated in tabular form below, eventually appearing as the diagonal elements of

the table.

Example:

The Hermite interpolation based Newton's polynomials is again carried out to the
same function used before. Now we assume both the first and second order
derivatives and are available as well as at the points. The resulting Hermite
interpolation is plotted together with in the figure below. We see that they are

almost identical, with an error .

The Matlab code that implements this algorithm is listed below.

function [v]=HIN(u,x,dy) % Hermite interpolation (Newton)
 % u: discrete data points;
 % vector x: [x_1,...,x_n]
 % matrix dy contains m derivatives at each of the n points
 [n m]=size(dy);
 k=length(u); % number of discrete data points
 v=zeros(1,k); % interpolation results
 dd=DividedDifference2(x,dy); % get the divided difference array
 w=ones(1,k);
 for i=1:n
 p=u-x(i);
 for j=1:m
 l=(i-1)*m+j; % index of the coefficient
 v=v+dd(l,l).*w; % which is on the diagnal of array dd
 w=w.*p;
 end
 end
end

function dd=DividedDifference2(x,dy) % generate array of divided differences
 [n m]=size(dy); % n data points, m derivatives (0 to m-1)
 dd=zeros(n*m); % matrix of divided differences

 z=zeros(1,n*m);
 k=1;
 for i=1:n % n data points
 for j=1:m % m derivatives (0 to m-1) at each point
 k=(i-1)*m+j; % row index
 z(k)=x(i);
 dd(k,1)=dy(i,1); % 0th divided difference in first column
 fprintf('%6.3f\t%6.3f\t',z(k),dd(k,1));
 for l=2:k % column index for the remaining columns
 %fprintf('(%f %f)\n',dd(k,l-1),dd(k-1,l-1));
 if dd(k,l-1)==dd(k-1,l-1) % left and top-left neighbors are repeated
 dd(k,l)=dy(i,l)/factorial(l-1);
 fprintf('k=%d, l=%d\n',k,l);
 pause
 else
 dd(k,l)=(dd(k,l-1)-dd(k-1,l-1))/(z(k)-z(k-l+1));
 end
 fprintf('%6.3f\t',dd(k,l));
 end
 fprintf('\n');
 end
 end
end

The array of divided differences generated by the function DividedDifference2 is
given below, the elements along the diagonal are the coefficients in the Hermite
polynomials.

In some cases, in engineering or real world technical problems, we are not interested
to find the exact solution of a problem. If we have a good enough approximation, we
can consider that we‘ve found the solution of the problem.

For example, if we want to compute the trigonometric function f(x)=sin(x) with a hand
held calculator, we have two options:

 use the actual trigonometric function sin(x), if the calculator has the function
embedded (available if it‘s a scientific calculator)

 use a polynomial as an approximation of the sin(x) function and compute the
result with any calculator, or even by hand

In general, any mathematical function f(x), with some constraints, can be
approximated by a polynomial P(x):

P(x)=a0+a1⋅x+a2⋅x2+…+an⋅xn

Weierstrass approximation theorem

First, let‘s put down what the theorem sounds like. After, we‘ll try to explain it a bit.

Theorem: For a given function f(x), which is defined and continuous on the
interval [a, b], there is always a polynomial P(x), also defined on the interval [a, b],
with the property:

|f(x)−P(x)|<ε

for any x ∈ [a, b]. and a given ε > 0.

Image: Polynomial approximation of a function f(x)

The theorem says that for any function f(x), which is continuous and defined between
the points a and b, there is always a polynomial P(x), which can approximate the
function f(x) with a small error ε, in the same interval [a, b].
Taylor‘s polynomials

Example: Let‘s approximate the function f(x)=sin(x) with a polynomial of order 3,
around the point x0 = 0. Using the determined polynomial, approximate the value
of sin(0.1).
Explanation: ―around the point x0‖ means that f(n)(x0) = P(n)(x0), which means that the
evaluation of the function and its derivatives in the point x0 is equal to the evaluation
of the polynomial and its derivatives.
Step 1. Write the polynomial of order 3.

P(x)=a0+a1⋅x+a2⋅x2+a3⋅x3

Step 2. Calculate the 3rd order derivatives of P(x). We need them in order to find out
the values of the coefficients a0, a1, a2 and a3.

P(x)P′(x)P′′(x)P′′′(x)=a0+a1x+a2x2+a3x3=a1+2a2x+3a3x2=2a2+6a3x=6a3

Step 3. Calculate P(n)(x0).
P(0)P′(0)P′′(0)P′′′(0)=a0=a1=2a2=6a3

Step 4. Calculate the 3rd order derivatives of f(x).
f(x)f′(x)f′′(x)f′′′(x)=sin(x)=cos(x)=−sin(x)=−cos(x)

Step 5. Calculate f(n)(x0).

https://x-engineer.org/wp-content/uploads/2019/12/Polynomial-approximation.png?9da70d&9da70d

f(0)f′(0)f′′(0)f′′′(0)=sin(0)=cos(0)=−sin(0)=−cos(0)=0=1=0=−1

Step 6. Calculate the coefficients a0, a1, a2 and a3.

\[\begin{split}
P(0)&=f(0) &\Rightarrow a_{0}&=0\\
P^{\prime}(0)&=f^{\prime}(0) &\Rightarrow a_{1}&=1\\
P^{\prime\prime}(0)&=f^{\prime\prime}(0) &\Rightarrow a_{2}&=0\\

Chebyshev Polynomial of the First Kind

The Chebyshev polynomials of the first kind are a set of orthogonal
polynomials defined as the solutions to the Chebyshev differential equation and

denoted . They are used as an approximation to a least squares fit, and are a

special case of the Gegenbauer polynomial with . They are also intimately
connected with trigonometric multiple-angle formulas. The Chebyshev polynomials of

the first kind are denoted , and are implemented in the Wolfram

Language as ChebyshevT[n, x]. They are normalized such that . The first

few polynomials are illustrated above for and , 2, ..., 5.

The Chebyshev polynomial of the first kind can be defined by the contour
integral

(1)

where the contour encloses the origin and is traversed in a counterclockwise
direction (Arfken 1985, p. 416).

The first few Chebyshev polynomials of the first kind are

https://mathworld.wolfram.com/OrthogonalPolynomials.html
https://mathworld.wolfram.com/OrthogonalPolynomials.html
https://mathworld.wolfram.com/ChebyshevDifferentialEquation.html
https://mathworld.wolfram.com/LeastSquaresFitting.html
https://mathworld.wolfram.com/GegenbauerPolynomial.html
https://mathworld.wolfram.com/Multiple-AngleFormulas.html
https://www.wolfram.com/language/
https://www.wolfram.com/language/
https://reference.wolfram.com/language/ref/ChebyshevT.html
https://mathworld.wolfram.com/ContourIntegral.html
https://mathworld.wolfram.com/ContourIntegral.html
https://mathworld.wolfram.com/notebooks/SpecialFunctions/ChebyshevPolynomialoftheFirstKind.nb
https://mathworld.wolfram.com/notebooks/SpecialFunctions/ChebyshevPolynomialoftheFirstKind.nb
https://mathworld.wolfram.com/notebooks/SpecialFunctions/ChebyshevPolynomialoftheFirstKind.nb
https://mathworld.wolfram.com/notebooks/SpecialFunctions/ChebyshevPolynomialoftheFirstKind.nb
https://mathworld.wolfram.com/notebooks/SpecialFunctions/ChebyshevPolynomialoftheFirstKind.nb
https://mathworld.wolfram.com/notebooks/SpecialFunctions/ChebyshevPolynomialoftheFirstKind.nb
https://mathworld.wolfram.com/notebooks/SpecialFunctions/ChebyshevPolynomialoftheFirstKind.nb
https://mathworld.wolfram.com/notebooks/SpecialFunctions/ChebyshevPolynomialoftheFirstKind.nb
https://mathworld.wolfram.com/notebooks/SpecialFunctions/ChebyshevPolynomialoftheFirstKind.nb
https://mathworld.wolfram.com/notebooks/SpecialFunctions/ChebyshevPolynomialoftheFirstKind.nb

(2)

(3)

(4)

(5)

(6)

(7)

(8)

When ordered from smallest to largest powers, the triangle of nonzero coefficients is

1; 1; , 2; , 4; 1, , 8; 5, , 16, ... (OEIS A008310).

A beautiful plot can be obtained by plotting radially, increasing the radius for

each value of , and filling in the areas between the curves (Trott 1999, pp. 10 and
84).

The Chebyshev polynomials of the first kind are defined through the identity

(9)

https://oeis.org/A008310

The Chebyshev polynomials of the first kind can be obtained from the generating
functions

(10)

(11)

and

(12)

(13)

for and (Beeler et al. 1972, Item 15). (A closely related generating
function is the basis for the definition of Chebyshev polynomial of the second kind.)

A direct representation is given by

(14)

The polynomials can also be defined in terms of the sums

(15)

(16)

(17)

where is a binomial coefficient and is the floor function, or the product

(18)

(Zwillinger 1995, p. 696).

 also satisfy the curious determinant equation

https://mathworld.wolfram.com/GeneratingFunction.html
https://mathworld.wolfram.com/GeneratingFunction.html
https://mathworld.wolfram.com/GeneratingFunction.html
https://mathworld.wolfram.com/GeneratingFunction.html
https://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
https://mathworld.wolfram.com/BinomialCoefficient.html
https://mathworld.wolfram.com/FloorFunction.html
https://mathworld.wolfram.com/Determinant.html

(19)

(Nash 1986).

The Chebyshev polynomials of the first kind are a special case of the Jacobi

polynomials with ,

(20)

(21)

where is a hypergeometric function (Koekoek and Swarttouw 1998).

Zeros occur when

(22)

for , 2, ..., . Extrema occur for

(23)

where . At maximum, , and at minimum, .

The Chebyshev polynomials are orthogonal polynomials with respect to

the weighting function

(24)

where is the Kronecker delta. Chebyshev polynomials of the first kind satisfy the
additional discrete identity

https://mathworld.wolfram.com/JacobiPolynomial.html
https://mathworld.wolfram.com/JacobiPolynomial.html
https://mathworld.wolfram.com/HypergeometricFunction.html
https://mathworld.wolfram.com/OrthogonalPolynomials.html
https://mathworld.wolfram.com/WeightingFunction.html
https://mathworld.wolfram.com/KroneckerDelta.html

(25)

where for , ..., are the zeros of .

They also satisfy the recurrence relations

(26)

(27)

for , as well as

(28)

(29)

(Watkins and Zeitlin 1993; Rivlin 1990, p. 5).

They have a complex integral representation

(30)

and a Rodrigues representation

(31)

Using a fast Fibonacci transform with multiplication law

(32)

gives

(33)

Using Gram-Schmidt orthonormalization in the range (,1) with weighting

function gives

(34)

https://mathworld.wolfram.com/RecurrenceRelation.html
https://mathworld.wolfram.com/ComplexNumber.html
https://mathworld.wolfram.com/RodriguesRepresentation.html
https://mathworld.wolfram.com/FastFibonacciTransform.html
https://mathworld.wolfram.com/Gram-SchmidtOrthonormalization.html
https://mathworld.wolfram.com/WeightingFunction.html
https://mathworld.wolfram.com/WeightingFunction.html

(35)

(36)

(37)

(38)

(39)

(40)

etc. Normalizing such that gives the Chebyshev polynomials of the first kind.

The Chebyshev polynomial of the first kind is related to the Bessel function of the

first kind and modified Bessel function of the first kind by the relations

(41)

(42)

Letting allows the Chebyshev polynomials of the first kind to be written as

(43)

(44)

The second linearly dependent solution to the transformed differential equation

(45)

is then given by

(46)

(47)

which can also be written

https://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
https://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
https://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html

(48)

where is a Chebyshev polynomial of the second kind. Note that is
therefore not a polynomial.

The triangle of resultants is given by , , ,

, , ... (OEIS A054375).

The polynomials

(49)

of degree , the first few of which are

(50)

(51)

(52)

(53)

(54)

are the polynomials of degree which stay closest to in the interval . The

maximum deviation is at the points where

Unit-V

Numerical Differentiation and Integration:

https://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
https://mathworld.wolfram.com/Polynomial.html
https://mathworld.wolfram.com/Resultant.html
https://oeis.org/A054375
https://mathworld.wolfram.com/Polynomial.html
https://mathworld.wolfram.com/Polynomial.html

Introduction

Differentiation and integration are basic mathematical operations with a wide range

of applications in many areas of science. It is therefore important to have good

methods to compute and manipulate derivatives and integrals. You probably learnt

the basic rules of differentiation and integration in school — symbolic methods

suitable for pencil-and-paper calculations. These are important, and most derivatives

can be computed this way. Integration however, is different, and most integrals

cannot be determined with symbolic methods like the ones you learnt in school.

Another complication is the fact that in practical applications a function is only known

at a few points. For example, we may measure the position of a car every minute via

a GPS (Global Positioning System) unit, and we want to compute its speed. If the

position is known as a continuous function of time, we can find the speed by

differentiating this function. But when the position is only known at isolated times,

this is not possible. The same applies to integrals. The solution, both when it comes

to integrals that cannot be determined by the usual methods, and functions that are

only known at isolated points, is to use approximate methods of differentiation and

integration. In our context, these are going to be numerical methods. We are going to

present a number of methods for doing numerical integration and differentiation, but

more importantly, we are going to present a general strategy for deriving such

methods. In this way you will not only have a number of methods available to you,

but you will also be able to develop new methods, tailored to special situations that

you may encounter. We use the same general strategy for deriving both numerical

integration and numerical differentiation methods. The basic idea is to evaluate a

function at a few points, find the polynomial that interpolates the function at these

points, and use the derivative or integral of the polynomial as an approximation to

the function. This technique also allows us to keep track of the so-called truncation

error, the mathematical error committed by integrating or differentiating the

polynomial instead of the function itself. However, when it comes to roundoff error,

we have to treat differentiation and integration differently: Numerical integration is

very insensitive to round-off errors, while numerical differentiation behaves in the

opposite way; it is very sensitive to round-off errors. 11.1 A simple method for

numerical differentiation We start by studying numerical differentiation. We first

introduce the simplest method, derive its error, and its sensitivity to round-off errors.

The procedure used here for deriving the method and analysing the error is used

over again in later sections to derive and analyse additional methods. Let us first

make it clear what numerical differentiation is. Problem 11.1 (Numerical

differentiation). Let f be a given function that is only known at a number of isolated

points. The problem of numerical differentiation is to compute an approximation to

the derivative f 0 of f by suitable combinations of the known values of f . A typical

example is that f is given by a computer program (more specifically a function,

procedure or method, depending on you choice of programming language), and you

can call the program with a floating-point argument x and receive back a floating-

point approximation of f (x). The challenge is to compute an approximation to f 0 (a)

for some real number a when the only aid we have at our disposal is the program to

compute values of f . 11.1.1 The basic idea Since we are going to compute

derivatives, we must be clear about they are defined. Recall that f 0 (a) is defined by

f 0 (a) = lim h→0 f (a +h)− f (a) h . (11.1) In the following we will assume that this limit

exists; i.e., that f is differentiable. From (11.1) we immediately have a natural

approximation to f 0 (a); we simply 228 pick a positive h and use the approximation f

0 (a) ≈ f (a +h)− f (a) h . (11.2) Note that this corresponds to approximating f by the

straight line p1 that interpolates f at a and a −h, and then using p 0 1 (a) as an

approximation to f 0 (a). Observation 11.2. The derivative of f at a can be

approximated by f 0 (a) ≈ f (a +h)− f (a) h . In a practical situation, the number a

would be given, and we would have to locate the two nearest values a1 and a2 to

the left and right of a such that f (a1) and f (a2) can be found. Then we would use the

approximation f 0 (a) ≈ f (a2)− f (a1) a2 − a1 . In later sections, we will derive several

formulas like (11.2). Which formula to use for a specific example, and exactly how to

use it, will have to be decided in each case. Example 11.3. Let us test the

approximation (11.2) for the function f (x) = sinx at a = 0.5 (using 64-bit floating-point

numbers). In this case we have f 0 (x) = cosx so f 0 (a) = 0.87758256. This makes it

is easy to check the accuracy. We try with a few values of h and find h ¡ f (a +h)− f

(a) ¢±h E1(f ;a,h) 10−1 0.8521693479 2.5×10−2 10−2 0.8751708279 2.4×10−3 10−3

0.8773427029 2.4×10−4 10−4 0.8775585892 2.4×10−5 10−5 0.8775801647

2.4×10−6 10−6 0.8775823222 2.4×10−7 where E1(f ;a,h) = f (a)− ¡ f (a+h)− f (a) ¢±h.

In other words, the approximation seems to improve with decreasing h, as expected.

More precisely, when h is reduced by a factor of 10, the error is reduced by the same

factor.

Numerical Differentiation

Numerical differentiation is the process of finding the numerical value of
a derivative of a given function at a given point. In general, numerical differentiation
is more difficult than numerical integration. This is because while numerical
integration requires only good continuity properties of the function being integrated,
numerical differentiation requires more complicated properties such as Lipschitz
classes. Numerical differentiation is implemented as ND[f, x, x0, Scale -> scale] in
the Wolfram Language package NumericalCalculus` .

There are many applications where derivatives need to be computed numerically.
The simplest approach simply uses the definition of the derivative

for some small numerical value of .

A Numerical Integration

Numerical integration of the equations described in this chapter is required to
generate simulations of material response to a given loading history. It is important to
consider the techniques of numerical integration for reasons of computational
economy and compatibility with structural mechanics codes in which the constitutive
equations may be employed.

https://mathworld.wolfram.com/Derivative.html
https://mathworld.wolfram.com/NumericalIntegration.html
https://mathworld.wolfram.com/NumericalIntegration.html
https://mathworld.wolfram.com/NumericalIntegration.html
https://reference.wolfram.com/language/NumericalCalculus/ref/ND.html
https://www.wolfram.com/language/
https://mathworld.wolfram.com/Derivative.html

The MATMOD-4V-DISTORTION equations are numerically integrated using the
Gear Method for stiff differential equations. Such methods are necessary because of
the inherent mathematical stiffness of any unified model, including MATMOD. The
stiffness of these equations arises from the coupling of nonelastic and elastic strains
to calculate the total strain, and the fact that ɛ˙ is a strong function of σ. Analogous
problems arise in integrating the structure evolution equations, adding to the difficulty
of the integration. To attack these problems and to provide a better interface with
existing finite-element structural mechanics codes, the NONSS (NONlinear System
Solver) method was developed (Tanaka, 1983; Tanaka and Miller, 1988; Miller and
Tanaka, 1988) and employed for integration of the three-dimensional MATMOD-
BSSOL equations (Henshall, 1987).

Details of the methods used to integrate the MATMOD-4V-DISTORTION and
MATMOD-BSSOL equations are provided elsewhere (Helling, 1986; Henshall,
1987; Miller, 1987; Tanaka, 1983; Tanaka and Miller, 1988). The Fortran programs
embodying these numerical integration schemes are available for both models
through any of the authors. Recently, the NONSS method was incorporated into a
finite-element code by Chellapandi and Alwar (1996). They used the 23-parameter
Chaboche viscoplastic constitutive model and compared the computational efficiency
of NONSS against their standard Self-Adaptive Forward Euler (SAFE) method. For
their three most complicated cases including cyclic loading and behavior around
notches, the ratios of computational time by SAFE to that using NONSS were 8.47,
9.7, and 7.33, respectively. This indicates that considerable time can be saved in
finite-element analyses involving advanced unified constitutive equations by
employing numerical methods.

Numerical integration procedures have been applied frequently in order to avoid
some of the assumptions inherent in the above approximate treatments. Among the
most straightforward of these is the method utilized in Nordheim's33 code ZUT, which
calculates effective resonance integrals for isolated resonances in a two region
lattice geometry.

As discussed in connection with equation (22) in Section 3.1 the shielding function in
the fuel f0(u) for an isolated resonance may be obtained by solving the integral
equation for the collision density per unit energy ψ0(u) expressed as a function of
lethargy. The loss of neutrons due to absorption is then accounted for by an
exponential dependence of the slowing down density on the group resonance
integral for absorption, equation (12). The function ψ0(u) is obtained by solving the
first of the two integral equations shown in equation (36), to which the reciprocity
relation, equation (41), is applied, giving

(97)ψ0(u)=P0(u)∑iTiψ0+{1−P0(u)}×{Σt(u)}0(ΣB)1∑jTjψ1.

The resonance integrals are then obtained from equation (26) as applied to the fuel,
(98)(Ieffx)i=∫resσix(u){Σt(u)}0Eψ0(u)du.

The ZUT code simplifies equation (97) by assuming that for slowing down by the
moderator nuclides the NR approximation holds. As discussed in connection
with equation (27), the equation then reduces to
(99)ψ0(u)=P0(u)∑iTiψ0+{1−P0(u)}{Σt(u)}0/E

https://www.sciencedirect.com/topics/engineering/energy-engineering

which is an integral equation for ψ0(u), the integral operators Ti being defined
in equation (25). The ZUT program solves equation (99) by Simpson integrations
over a fine lethargy mesh, which covers the central portion of each individual
resonance, this lethargy range being defined to be five practical
widths √(σto/σtp)Γ/E0,, or ten Doppler widths 2Δ/E0, whichever is the larger. The
small wing corrections outside this range are added as unshielded unbroadened
resonance integrals in a 1/E flux. The Simpson integration of equation (99), and
subsequent trapezium integration of equation (98), start at the low lethargy limit of
the central portion of the resonance, and proceed on a fine lethargy mesh, selected
so that an integral number of mesh intervals cover the range of integration
in equation (98). The masses of the nuclides i are adjusted slightly, as required, in
order that an even number of mesh intervals cover the integration range
in Tiψ0 of equation (99). Outside the central portion of the resonance ψ0(u) is
assumed to have the asymptotic value (ΣB)0/E or (ΣB)0 e

u/E0. Consequently, the
solution of equation (99) can proceed successively from mesh point to mesh point by
Simpson integration, the value ψ0(u) at the next mesh point being the only unknown.
The successive contributions to the integral in equation (98) are calculated as soon
as the ψ0(u) becomes known at each new mesh point (see also Section 4.3).

One-dimensional integration

J.E. Akin, in Finite Element Analysis with Error Estimators, 2005

4.4 Numerical integration

Numerical integration is simply a procedure that approximates (usually) an integral
by a summation. To review this subject we refer to Fig. 4.2. Recall that the integral

https://www.sciencedirect.com/science/article/pii/B9780750667227500357
https://www.sciencedirect.com/book/9780750667227/finite-element-analysis-with-error-estimators
https://www.sciencedirect.com/topics/mathematics/numerical-integration

(4.8)I=∫abf(x)dx

can be viewed graphically as the area between the x-axis and the curve y = f(x) in
the region of the limits of integration. Thus, we can interpret numerical integration as
an approximation of that area. The trapezoidal rule of numerical integration simply
approximates the area by the sum of several equally spaced trapezoids under the
curve between the limits of a and b. The height of a trapezoid is found from
the integrand, yj = y(xj), evaluated at equally spaced points, xj and xj+1. Thus, a
typical contribution is A = h(yj + yj+1)/2, where h = xj+1 − xj is the spacing. Thus,
for nq points (and nq − 1 spaces), the well-known approximation is
(4.9)I≈h(12y1+y2+y3+…+yn−1+12yn),I≈∑j=1nwjf(xj)

where Wj = h, except w1 = wn = h/2. A geometrical interpretation of this is that the
area under curve, I, is the sum of the products of certain heights, f(xj) times some
corresponding widths, Wj. In the terminology of numerical integration, the locations
of the points, xj, where the heights are computed are called abscissae and the
widths, wj, are called weights. Another well-known approximation is the Simpson
rule, which uses parabolic segments in the area approximation. For most functions
the above rules may require 20 to 40 terms in the summation to yield acceptable
accuracy. We want to carry out the summation with the minimum number of
terms, nq, in order to reduce the computational cost. What is the minimum number of
terms? The answer depends on the form of the integrand f (x). Since
the parametric geometry usually involves polynomials we will consider that common
special case for f (x).

Table 4.1. Abscissas and weights for Gaussian

quadrature ∫−1+1f(x)dx=∑i=1nqwif(xi)

±xi

Wi

0.00000 00000 00000 00000 0000 nq =
1

2.00000 00000 00000 00000 000

0.57735 02691 89625 76450 9149 nq =
2

1.00000 00000 00000 00000 000

0.77459 66692 41483 37703 5835 nq =
3

0.55555 55555 55555 55555 556

0.00000 00000 00000 00000 0000 0.88888 88888 88888 88888 889

0.86113 63115 94052 57522 3946 nq =
4

0.34785 48451 37453 85737 306

0.33998 10435 84856 26480 2666 0.65214 51548 62546 14262 694

0.90617 98459 38663 99279 7627 nq =
5

0.23692 68850 56189 08751 426

https://www.sciencedirect.com/topics/mathematics/numerical-integration
https://www.sciencedirect.com/topics/mathematics/trapezoidal-rule
https://www.sciencedirect.com/topics/mathematics/trapezoid
https://www.sciencedirect.com/topics/mathematics/integrand
https://www.sciencedirect.com/topics/mathematics/simpsons-rule
https://www.sciencedirect.com/topics/mathematics/simpsons-rule
https://www.sciencedirect.com/topics/mathematics/parametric
https://www.sciencedirect.com/topics/mathematics/polynomial

0.53846 93101 05683 09103 6314 0.47862 86704 99366 46804 129

0.00000 00000 00000 00000 0000 0.56888 88888 88888 88888 889

0.93246 95142 03152 02781 2302 nq =
6

0.17132 44923 79170 34504 030

0.66120 93864 66264 51366 1400 0.36076 15730 48138 60756 983

0.23861 91860 83196 90863 0502 0.46791 39345 72691 04738 987

0.94910 79123 42758 52452 6190 nq =
7

0.12948 49661 68869 69327 061

0.74153 11855 99394 43986 3865 0.27970 53914 89276 66790 147

0.40584 51513 77397 16690 6607 0.38183 00505 05118 94495 037

0.00000 00000 00000 00000 0000 0.41795 91836 73469 38775 510

Table 4.2. Unit abscissas and weights for Gaussian

quadrature ∫01f(x)dx=∑i=1nqwif(xi)

xi

Wi

0.50000 00000 00000 00000 000 nq =
1

1.00000 00000 00000 00000 000

0.21132 48654 05187 11774 543 nq =
2

0.50000 00000 00000 00000 000

0.78867 51345 94812 88225 457 0.50000 00000 00000 00000 000

0.11270 16653 79258 31148 208 nq =
3

0.27777 77777 77777 77777 778

0.50000 00000 00000 00000 000 0.44444 44444 44444 44444 444

0.88729 83346 20741 68851 792 0.27777 77777 77777 77777 778

0.06943 18442 02973 71238 803 nq =
4

0.17392 74225 68726 92868 653

0.33000 94782 07571 86759 867 0.32607 25774 31273 07131 347

0.66999 05217 92428 13240 133 0.32607 25774 31273 07131 347

0.93056 81557 97026 28761 197 0.17392 74225 68726 92868 653

0.04691 00770 30668 00360 119 nq =
5

0.11846 34425 28094 54375 713

0.02307 65344 94715 84544 818 0.23931 43352 49683 23402 065

0.50000 00000 00000 00000 000 0.28444 44444 44444 44444 444

0.76923 46550 52841 54551 816 0.23931 43352 49683 23402 065

0.95308 99229 69331 99639 881 0.11846 34425 28094 54375 713

Sometimes it is desirable to have a numerical integration rule that specifically
includes the two end points in the abscissae list when (n ≥ 2). The Lobatto rule is
such an alternate choice. Its nq points will exactly integrate a polynomial of order
(2n − 3) for nq > 2. Its data are included in Table 4.3. It is usually less accurate than
the Gauss rule but it can be useful. Mathematical handbooks give tables of Gauss or
Lobatto data for much higher values of nq. Some results of Gauss's work are outlined
below. Let y denote f(x) in the integral to be computed. Define a change of variable

Table 4.3. Abscissas and weight factors for Lobatto

integration ∫−1+1f(x)dx≈∑i=1nqwif(xi)

±xi

Wi

0.00000 00000 00000 nq = 1 2.00000 00000 00000

1.00000 00000 00000 nq = 2 1.00000 00000 00000

1.00000 00000 00000 nq = 3 0.33333 33333 33333

0.00000 00000 00000 1.33333 33333 33333

1.00000 00000 00000 nq = 4 0.16666 66666 66667

0.44721 35954 99958 0.83333 33333 33333

1.00000 00000 00000 nq = 5 0.10000 00000 00000

0.65465 36707 07977 0.54444 44444 44444

0.00000 00000 00000 0.71111 11111 11111

1.00000 00000 00000 nq = 6 0.06666 66666 66667

0.76505 53239 29465 0.37847 49562 97847

0.28523 15164 80645 0.55485 83770 35486

(4.10)x(n)=1/2(b−a)n+1/2(b+a)

so that the non-dimensional limits of integration of n become −1 and +1. The new
value of y(n) is
(4.11)y=f(x)=f[1/2(b−a)n+1/2(b+a)]=Φ(n).

Noting from Eq. 4.10 that dx = 1/2 (b – a) dn, the original integral becomes

(4.12)I=12(b−a)∫−11Φ(n)dn.

Gauss showed that the integral in Eq. 4.12 is given by
∫−11Φ(n)dn=∑i=1nqWiΦ(ni),

where Wi and ni represent tabulated values of the weight
functions and abscissae associated with the nq points in the non-dimensional interval
(−1, 1). The final result is
(4.13)I=12(b−a)∑i=1nqWiΦ(ni)=∑i=1nqf(x(ni))Wi.

Gauss also showed that this equation will exactly integrate a polynomial of degree
(2nq – 1). For a higher number of space dimensions (which range from −1 to +1),
one obtains a multiple summation. Since Gaussian quadrature data are often
tabulated in references for the range −1 ≤ n ≤ + 1, it is popular to use the natural
coordinates in defining element integrals. However, one can convert the tabulated
data to any convenient system such as the unit coordinate system where 0 ≤ r ≤ 1.
The latter may be more useful on triangular regions. As an example of Gaussian
quadratures, consider the following one-dimensional integral:

I=∫12 [22x2x(1+2x2)] dx=∫12F(x)dx.

If two Gauss points are selected (nq = 2), then the tabulated values from Table
4.1 give W1 = W2 = 1 and r1 = 0.57735 = − r2 The change of variable gives x(r) = (r +
3)/2, so that x(r1) = 1.788675 and x(r2) = 1.211325.

Trapezoidal Rule

In Calculus, ―Trapezoidal Rule‖ is one of the important integration rules. The name
trapezoidal is because when the area under the curve is evaluated, then the total
area is divided into small trapezoids instead of rectangles. This rule is used for
approximating the definite integrals where it uses the linear approximations of the
functions.

The trapezoidal rule is mostly used in the numerical analysis process. To evaluate
the definite integrals, we can also use Riemann Sums, where we use small
rectangles to evaluate the area under the curve.

https://www.sciencedirect.com/topics/mathematics/quadrature
https://www.sciencedirect.com/topics/mathematics/coordinate-system-xi
https://www.sciencedirect.com/topics/computer-science/triangular-region
https://www.sciencedirect.com/topics/mathematics/gaussian-quadrature
https://www.sciencedirect.com/topics/mathematics/gaussian-quadrature
https://www.sciencedirect.com/topics/engineering/gauss-point
https://byjus.com/maths/definite-integral/

Trapezoidal Rule Definition

Trapezoidal Rule is a rule that evaluates the area under the curves by dividing the
total area into smaller trapezoids rather than using rectangles. This integration works
by approximating the region under the graph of a function as a trapezoid, and it
calculates the area. This rule takes the average of the left and the right sum.

The Trapezoidal Rule does not give accurate value as Simpson‘s Rule when the
underlying function is smooth. It is because Simpson‘s Rule uses the quadratic
approximation instead of linear approximation. Both Simpson‘s Rule and Trapezoidal
Rule give the approximation value, but Simpson‘s Rule results in even more
accurate approximation value of the integrals.

Trapezoidal Rule Formula

Let f(x) be a continuous function on the interval [a, b]. Now divide the intervals [a, b]
into n equal subintervals with each of width,

Δx = (b-a)/n, Such that a = x0 < x1< x2< x3<…..<xn = b

Then the Trapezoidal Rule formula for area approximating the definite
integral ∫baf(x)dx is given by:

∫baf(x)dx≈Tn=△x2[f(x0)+2f(x1)+2f(x2)+….2f(xn−1)+f(xn)]

Where, xi = a+iΔx

If n →∞, R.H.S of the expression approaches the definite integral ∫baf(x)dx

Solved Examples

Go through the below given Trapezoidal Rule example.

Example 1:

Approximate the area under the curve y = f(x) between x =0 and x=8 using
Trapezoidal Rule with n = 4 subintervals. A function f(x) is given in the table of
values.

x 0 2 4 6 8

f(x) 3 7 11 9 3

Solution:

The Trapezoidal Rule formula for n= 4 subintervals is given as:

T4 =(Δx/2)[f(x0)+ 2f(x1)+ 2f(x2)+2f(x3) + f(x4)]

Here the subinterval width Δx = 2.

Now, substitute the values from the table, to find the approximate value of the area
under the curve.

A≈ T4 =(2/2)[3+ 2(7)+ 2(11)+2(9) + 3]

https://byjus.com/maths/simpsons-rule/

A≈ T4 = 3 + 14 + 22+ 18+3 = 60

Therefore, the approximate value of area under the curve using Trapezoidal Rule is
60.

Example 2:

Approximate the area under the curve y = f(x) between x =-4 and x= 2 using
Trapezoidal Rule with n = 6 subintervals. A function f(x) is given in the table of
values.

x -4 -3 -2 -1 0 1 2

f(x) 0 4 5 3 10 11 2

Solution:

The Trapezoidal Rule formula for n= 6 subintervals is given as:

T6 =(Δx/2)[f(x0)+ 2f(x1)+ 2f(x2)+2f(x3) + 2f(x4)+2f(x5)+ f(x6)]

Here the subinterval width Δx = 1.

Now, substitute the values from the table, to find the approximate value of the area
under the curve.

A≈ T6 =(1/2)[0+ 2(4)+ 2(5)+2(3) + 2(10)+2(11) +2]

A≈ T6 =(½) [8 + 10 + 6+ 20 +22 +2] = 68/2 = 34

Therefore, the approximate value of area under the curve using Trapezoidal Rule is
34.

Register with BYJU‘S – The Learning App to read all Calculus related topics and
download the App to watch interactive videos.

Frequently Asked Questions – FAQs

What is Trapezoidal Rule?

Trapezoidal Rule is an integration rule, in Calculus, that evaluates the area under the

curves by dividing the total area into smaller trapezoids rather than using rectangles.

Why the rule is named after trapezoid?

The name trapezoidal is because when the area under the curve is evaluated, then

the total area is divided into small trapezoids instead of rectangles. Then we find the

area of these small trapezoids in a definite interval.

What is the difference between Trapezoidal rule and Riemann Sums rule?

In trapezoidal rule, we use trapezoids to approximate the area under the curve

whereas in Riemann sums we use rectangles to find area under the curve, in case of

integration.

Simpson's Rule

Simpson’s rule is one of the numerical methods which is used to evaluate the
definite integral. Usually, to find the definite integral, we use the fundamental
theorem of calculus, where we have to apply the antiderivative techniques of
integration. But sometimes it is difficult to find the antiderivative of an integral, like in
the case of Scientific Experiments, where the function has to be determined from the
observed readings. Therefore, the numerical methods are used to approximate the
integral in such conditions. Other numerical methods used are trapezoidal rule,
midpoint rule, left or right approximation using Riemann sums. Here, we are going to
discuss Simpson‘s rule formula, 1/3 rule, 3/8 rule, and examples.

Table of Contents:

 Formula

 Simpson‘s 1/3 Rule

 1/3 Rule for Integration

 Simpson‘s 3/8 Rule

 Error

 Example

Simpson’s Rule Formula

Simpson‘s rule methods are more accurate than the other numerical approximations
and its formula for n+1 equally spaced subdivision is given by;

Where n is the even number, △x = (b – a)/n and xi = a+i△x

If we have f(x) = y, which is equally spaced between [a,b] and if a = x0, x1 = x0 + h,
x2 = x0 + 2h …., xn = x0 + nh, where h is the difference between the terms. Or we
can say that y0 = f(x0), y1 = f(x1), y2 = f(x2),……,yn = f(xn) are the analogous values of
y with each value of x.

Simpson’s 1/3 Rule

Simpson‘s 1/3rd rule is an extension of the trapezoidal rule in which the integrand is
approximated by a second-order polynomial. Simpson rule can be derived from the
various way using Newton‘s divided difference polynomial, Lagrange polynomial,
and the method of coefficients. Simpson‘s 1/3 rule is defined by:

∫a
b f(x) dx = h/3[(y0+yn) + 4(y1+y3+y5+….+yn-1)+2(y2+y4+y6+…..+yn-2)]

https://byjus.com/maths/trapezoidal-rule/
https://byjus.com/#formula
https://byjus.com/#simpsons-1/3-rule
https://byjus.com/#1/3-rule-for-integration
https://byjus.com/#simpsons-3/8-rule
https://byjus.com/#error
https://byjus.com/#example

This rule is known as Simpson‘s One-third rule.

Simpson’s ⅓ Rule for Integration

We can get a quick approximation for definite integrals when we divide a small
interval[a,b] into two parts. Therefore, after dividing the interval, we get;

x0=a, x1= a+b, x2 = b

Hence, we can write the approximation as;

∫a
b f(x) dx ≈ S2 = h/3[f(x0) + 4f(x1) + f(x2)]

S2 = h/3[f(a)+4f(a+b/2)+f(b)]

Where h = (b-a)/2

This is the simpson‘s ⅓ rule for integration.

Simpson’s 3/8 Rule

Another method of numerical integration method called ―Simpson‘s 3/8 rule‖. It is
completely based on the cubic interpolation rather than the quadratic interpolation.
Simpson‘s 3/8 or three-eight rule is given by:

∫a
b f(x) dx = 3h/8[(y0+yn)+3(y1+y2+y4+y5+….+yn-1)+2(y3+y6+y9+…..+yn-3)]

This rule quite more accurate than the standard method, as it uses one more
functional value. For 3/8 rule, the composite Simpson‘s 3/8 rule also exists which is
similar to the generalized form. The 3/8 rule is known as Simpson‘s second rule of
integration.

Simpson’s Rule Error

Although in Simpson‘s rule method we get a more accurate approximation for
definite integral, still the error occurs which is defined as when n = 2;

-(1/90)(b-a/2)5f(4)(ξ)

Where ξ is some number between a and b.

Simpson’s Rule Example

Example: Evaluate ∫0
1exdx, by Simpson’s ⅓ rule.

Solution:

Let us divide the range (0,1) into six equal parts by taking h = 1/6.

When, x0 = 0 then y0 = e0 = 1

Now, when;

x1 = x0 + h = ⅙, then y1 = e1/6 = 1.1813

x2 = x0 + 2h = 2/6 = 1/3 then, y2 = e1/3 = 1.3956

x3 = x0 + 3h = 3/6 = ½ then y3 = e1/2= 1.6487

x4 = x0 + 4h = 4/6 ⅔ then y4 = e2/3 = 1.9477

x5 = x0 + 5h = ⅚ then y5 = e5/6 = 2.3009

x6 = x0 + 6h = 6/6 = 1 then y6 = e1 = 2.7182

We know by Simpson‘s ⅓ rule;

∫a
b f(x) dx = h/3[(y0+yn) + 4(y1+y3+y5+….+yn-1)+2(y2+y4+y6+…..+yn-2)]

Therefore,

∫0
1exdx = 1/18[(1+2.718)+4(1.1813+1.6487+2.3009)+2(1.39561+1.9477)]

= 0.055[3.7182 + 20.52422 + 6.6866]

= 1.71828

f(
x)

- algebraic expression in variable 'x'

x - name; specify the independent variable
a,
b

- algebraic expressions; specify the interval

o
pt
s

- equation(s) of the form option=value where option is one
of boxoptions, functionoptions, iterations, method, outline, output, partition,
pointoptions, refinement, showarea, showfunction, showpoints, subpartition
, view, or Student plot options; specify output options

 Description

• The ApproximateInt(f(x), x = a..b, method = boole, opts) command
approximates the integral of f(x) from a to b by using Boole's rule. The first two
arguments (function expression and range) can be replaced by a definite integral.

• If the independent variable can be uniquely determined from the expression, the
parameter x need not be included in the calling sequence.

• Given a partition of the interval , Boole's rule approximates the integral on each
subinterval by integrating the quartic function that interpolates five equally spaced
points in that subinterval.

• In the case that the widths of the subintervals are equal, the approximation can be
written as

 Traditionally, Boole's rule is written as: given N, where N is a positive multiple of 3,
and given equally spaced points , an approximation to the integral is

https://www.maplesoft.com/support/help/Maple/view.aspx?path=Student%2fplot_options

• By default, the interval is divided into equal-sized subintervals.

• For the options opts, see the ApproximateInt help page.

• This rule can be applied interactively, through the ApproximateInt Tutor.

• This rule is also sometimes known as Bode's Rule due to a misattribution in the
literature. The ApproximateInt command will accept
either method=boole or method=bode.

 Examples

>

>

>

 (1)

>

>

 (2)

>

>

https://www.maplesoft.com/support/help/Maple/view.aspx?path=Student%2fCalculus1%2fApproximateInt
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Student%2fCalculus1%2fApproximateIntTutor

To play the following animation in this help page, right-click (Control-click, on
Macintosh) the plot to display the context menu. Select Animation > Play.
>

Weddle's Rule

Let the values of a function be tabulated at points equally spaced

by , so , , Then Weddle's rule approximating the

integral of is given by the Newton-Cotes-like formula

Solution of differential equations:

Picard’s Method

The Picard’s method is an iterative method and is primarily used for approximating
solutions to differential equations.
This method of solving a differential equation approximately is one of successive
approximation; that is, it is an iterative method in which the numerical results become
more and more accurate, the more times it is used.

The Picard‘s iterative method gives a sequence of approximations Y1(x), Y2(x),
…Yk(x) to the solution of differential equations such that the nth approximation is
obtained from one or more previous approximations.

The Picard‘s iterative series is relatively easy to implement and the solutions obtained
through this numerical analysis are generally power series.
Picard’s iteration method formula:

Steps involved:

 Step 1: An approximate value of y (taken, at first, to be a constant) is

substituted into the right hand side of the differential equation:
dy/dx= f(x, y).

 Step 2: The equation is then integrated with respect to x giving y in terms of x
as a second approximation, into which given numerical values are substituted
and the result rounded off to an assigned number of decimal places or
significant figures.

https://mathworld.wolfram.com/Newton-CotesFormulas.html
https://media.geeksforgeeks.org/wp-content/uploads/20190618203246/Picard-iteration-formula.png
https://media.geeksforgeeks.org/wp-content/uploads/20190618203246/Picard-iteration-formula.png
https://media.geeksforgeeks.org/wp-content/uploads/20190618203246/Picard-iteration-formula.png
https://media.geeksforgeeks.org/wp-content/uploads/20190618203246/Picard-iteration-formula.png
https://media.geeksforgeeks.org/wp-content/uploads/20190618203246/Picard-iteration-formula.png
https://media.geeksforgeeks.org/wp-content/uploads/20190618203246/Picard-iteration-formula.png
https://media.geeksforgeeks.org/wp-content/uploads/20190618203246/Picard-iteration-formula.png
https://media.geeksforgeeks.org/wp-content/uploads/20190618203246/Picard-iteration-formula.png

 Step 3: The iterative process is continued until two consecutive numerical
solutions are the same when rounded off to the required number of decimal
places.

Picard’s iteration example:

Given that:

and that y = 0 when x = 0, determine the value of y when x = 0.3, correct to four
places of decimals.

Solution:

We may proceed as follows:

where x0 = 0. Hence:

where y0 = 0. which becomes:

 First Iteration:

We do not know y in terms of x yet, so we replace y by the constant value y0 in
the function to be integrated.
The result of the first iteration is thus given, at x = 0.3, by:

https://media.geeksforgeeks.org/wp-content/uploads/20190621183238/picard_1.png
https://media.geeksforgeeks.org/wp-content/uploads/20190621183238/picard_1.png
https://media.geeksforgeeks.org/wp-content/uploads/20190621183238/picard_1.png
https://media.geeksforgeeks.org/wp-content/uploads/20190621183238/picard_1.png
https://media.geeksforgeeks.org/wp-content/uploads/20190621183238/picard_1.png

 Second Iteration:
Now, we use:

Therefore,

which gives:

The result of the second iteration is thus given by:

at x=0.3.

 Third Iteration:
Now we use:

Therefore,

 which gives:

The result of the third iteration is thus given by:

at x = 0.3.

 Hence, y = 0.0451, correct upto four decimal places, at x = 0.3.

Program for Picard’s iterative method:
filter_none

edit
play_arrow
brightness_4
// C program for Picard's iterative method

#include <math.h>

#include <stdio.h>

// required macros defined below:

#define Y1(x) (1 + (x) + pow(x, 2) / 2)

#define Y2(x) (1 + (x) + pow(x, 2) / 2 + pow(x, 3) / 3 + pow(x, 4) / 8)

#define Y3(x) (1 + (x) + pow(x, 2) / 2 + pow(x, 3) / 3 + pow(x, 4) / 8 + pow(x, 5) / 15 + pow(x, 6) / 48)

intmain()

{

 doublestart_value = 0, end_value = 3,

 allowed_error = 0.4, temp;

 doubley1[30], y2[30], y3[30];

 intcount;

 for(temp = start_value, count = 0;

 temp <= end_value;

 temp = temp + allowed_error, count++) {

 y1[count] = Y1(temp);

 y2[count] = Y2(temp);

 y3[count] = Y3(temp);

 }

 printf("\nX\n");

 for(temp = start_value;

 temp <= end_value;

 temp = temp + allowed_error) {

 // considering all values

 // upto 4 decimal places.

 printf("%.4lf ", temp);

 }

 printf("\n\nY(1)\n");

 for(temp = start_value, count = 0;

 temp <= end_value;

 temp = temp + allowed_error, count++) {

 printf("%.4lf ", y1[count]);

 }

 printf("\n\nY(2)\n");

 for(temp = start_value, count = 0;

 temp <= end_value;

 temp = temp + allowed_error, count++) {

 printf("%.4lf ", y2[count]);

 }

 printf("\n\nY(3)\n");

 for(temp = start_value, count = 0;

 temp <= end_value;

 temp = temp + allowed_error, count++) {

 printf("%.4lf ", y3[count]);

 }

 return0;

}

Output:

X

0.0000 0.4000 0.8000 1.2000 1.6000 2.0000 2.4000 2.8000

Y(1)

1.0000 1.4800 2.1200 2.9200 3.8800 5.0000 6.2800 7.7200

Y(2)

1.0000 1.5045 2.3419 3.7552 6.0645 9.6667 15.0352 22.7205

Y(3)

1.0000 1.5053 2.3692 3.9833 7.1131 13.1333 24.3249 44.2335

Attention reader! Don‘t stop learning now. Get hold of all the important CS Theory
concepts for SDE interviews with the CS Theory Course at a student-friendly price and
become industry ready.

Euler method

In mathematics and computational science, the Euler method (also called forward
Euler method) is a first-order numerical procedure for solving ordinary differential
equations (ODEs) with a given initial value. It is the most basic explicit
method for numerical integration of ordinary differential equations and is the
simplest Runge–Kutta method. The Euler method is named after Leonhard Euler,
who treated it in his book Institutionum calculi integralis (published 1768–1870).[1]

The Euler method is a first-order method, which means that the local error (error per
step) is proportional to the square of the step size, and the global error (error at a
given time) is proportional to the step size. The Euler method often serves as the
basis to construct more complex methods, e.g., predictor–corrector method.

Euler‘s Method: If we truncate the Taylor series at the first term y(t + ∆t) = y(t)+∆ty0
(t) + 1 2 ∆t 2 y00(τ), we can rearrange this and solve for y0 (t) y0 (t) = y(t + ∆t) − y(t)
∆t + O(∆t). Now we can attempt to solve (1.1) by replacing the derivative with a
difference: y((n + 1)∆t) ≈ y(n∆t)+∆tf(n∆t, y(n∆t)) Start with y(0) and step forward to
solve for any time. What‘s good about this? If the O term is something nice looking,
this quantity decays with ∆t, so if we take ∆t smaller and smaller, this gets closer and
closer to the real value. What can go wrong? The O term may be ugly. The errors
can accumulate as I step forward 1 in time. Also, even though this may be a good
approximation for y0 (t) it may not converge to the right solution. To answer these
questions, we look at this scheme in depth. Terminology: From now on, we‘ll call yn
the numerical approximation to the solution y(n∆t); tn = n∆t. Euler‘s method can then
be written yn+1 = yn + ∆tf(tn, yn) n = 1, ..., N − 1 (1.2) This method assumes that you
can move from one location to the next using the slope given by the equation (1.1).
We saw last time that when we do this, our errors will decay linearly with ∆t. We will
show this again today, but in two steps, so that we can generalize it. The proof
should look very familiar! Local Truncation Error: To be able to evaluate what we
expect the order of a method to look like, we look at the LT E(t) = y(t + ∆t) − y(t) ∆t −
f(t, y(t)), i.e. it is the residue when the exact solution of the ODE (1.1) is plugged into
the numerical scheme. If yn is close to y(tn) then the LTE will be close to zero. The
local truncation error represents the terms neglected by truncating the Taylor series.
This is not the error that we get from the method, (i.e. the difference between the real
solution and the numerical solution) but will be connected. If I don‘t know y(t), what is
the use of this definition? (and if I do know y(t), what do I need the method for?!). It
turns out that even without explicit knowledge of the solution we can still calculate
the LTE and use it as an estimate and control of the error, by placing certain
smoothness assumptions on y(t) and using the Taylor Expansions. Clearly, at time
tn, Euler‘s method has Local Truncation Error: LT E = y(tn + ∆t) − y(tn) ∆t − f(tn,
y(tn)) = O(∆t), in other words, we can write this y(tn+1) = y(tn)+∆tf(tn, y(tn)) + ∆tLT E.
Of course, the method is yn+1 = y(tn)+∆tf(tn, yn). Subtract these two, |y(tn+1) −
yn+1| = |y(tn) − yn + ∆t(f(tn, y(tn)) − f(tn, yn)) + ∆tLT E| ≤ |y(tn) − yn| + ∆t|f(tn, y(tn)) −

https://practice.geeksforgeeks.org/courses/SDE-theory?vC=1
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computational_science
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Initial_value_problem
https://en.wikipedia.org/wiki/Explicit_and_implicit_methods
https://en.wikipedia.org/wiki/Explicit_and_implicit_methods
https://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method
https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Institutionum_calculi_integralis
https://en.wikipedia.org/wiki/Euler_method#cite_note-1
https://en.wikipedia.org/wiki/Predictor%E2%80%93corrector_method

f(tn, yn)| + ∆t|LT E| ≤ |y(tn) − yn| + ∆tL|y(tn) − yn| + ∆t|LT E| . Because f is Lipschitz
continuous, | f(tn, y(tn)) − f(tn, yn) y(tn) − yn | ≤ L. 2 And so, if we let the Global Error
be en = |y(tn) − yn|, then we can bound the growth of this error: en+1 ≤ en(1 + ∆tL) +
LT E∆t. How does this help us bound the method? Lemma: If zi+1 ≤ zi(1 + a∆t) + b
Then zi ≤ eai∆t (z0 + b a∆t) Proof: zi+1 ≤ zi (1 + a∆t) + b ≤ (zi−1(1 + a∆t) + b)(1 +
a∆t) + b · · · ≤ z0(1 + a∆t) i+1 + b(1 + (1 + a∆t)... + (1 + a∆t) i) = z0(1 + a∆t) i+1 + b
(1 + a∆t)i+1 − 1 1 + a∆t − 1 ≤ z0(1 + a∆t) i+1 + b a∆t (1 + a∆t) i+1 ≤ (1 + a∆t) i+1 z0 +
b a∆t ! ≤ ea∆t(i+1) z0 + b a∆t ! so zi ≤ eai∆t (z0 + b a∆t) Applying this lemma to the
global error, we have |en| ≤ eLn∆t (|e0| + M 2L∆t) Now, if n∆t ≤ T then |en| ≤ eLT
(|e0| + M 2L∆t) and since |e0| = 0 we have: |en| ≤ eLT (M 2L ∆t). Compare this with
the local error: LT E ≤ 1 2M∆t we see that the global error has the same order as the
local error with a different coefficient in the estimates. They are related by the
Lipschitz constant L and the final time T. The Order of a scheme r, is defined by |en|
= O(∆t r). The higher the order of the scheme, the faster the error decays. Comment:
The important thing to understand is that the Local Truncation Error is not always an
indicator of what the global error will do. Schemes that have the same order of LTE
and global error are good schemes. We need to define what makes the method have
the property that the global error will be of same order as the LTE.

Taylor's Series method

Consider the one dimensional initial value problem

y' = f(x, y), y(x0) = y0

where

f is a function of two variables x and y and (x0 , y0) is a known point on the solution

curve.

If the existence of all higher order partial derivatives is assumed for y at x = x0, then
by Taylor series the value of y at any neibhouring point x+h can be written as

y(x0+h) = y(x0) + h y'(x0) + h2 /2 y''(x0) + h3/3! y'''(x0) +

where ' represents the derivative with respect to x. Since at x0, y0 is
known, y' at x0 can be found by computing f(x0,y0). Similarly higher derivatives
of y at x0 also can be computed by making use of the relation y' = f(x,y)

 y'' = fx + fyy'
 y''' = fxx + 2fxyy' + fyy y'2 + fyy''

and so on. Then

y(x0+h) = y(x0) + h f + h2 (fx + fyy') / 2! + h3 (fxx + 2fxyy' + fyy y'2 + fyy'') / 3! +
o(h4)

Hence the value of y at any neighboring point x0+ h can be obtained by summing
the above infinite series. However, in any practical computation, the summation
has to be terminated after some finite number of terms. If the series has been
terminated after the pthderivative term then the approximated formula is called the

Taylor series approximation to y of order p and the error is of order p+1. The same
can be repeated to obtain y at other points of x in the interval [x0, xn] in a marching
process.

Algorithm

Specify x0, xn, y0, h
 ((x0, y0) Initial point,
 xn point where the solution is required
 h the step length to be used in the marching process)
Repeat
 compute f(xi, yi), f'(xi, yi), f''(xi, yi) . . .
 compute y(xi+h) = y(xi) + h f(xi, yi) + h2 /2 f'(xi, yi) + h3/3! f''(xi, yi) + . . .
 xi = xi + h
until xi = xn

Error in the approximation :

The Taylor series method of order p has the property that the final global error is of
order o(hp+1); hence p can be chosen as large as necessary to make the error is as
small as desired. If the order p is fixed, it is theoretically possible to a priori
determine the size of h so that the final global error will be as small as desired.
Since

Ep =
1

 hp+1 yp+1 0 <
(p+1)!

Making use of finite differences, the p+1th derivative of y at can be
approximated as

Ep =
hp (yp - yp(x))

(p+1)!

However, in practice one usually computes two sets of approximations using step
sizes h and h/2 and compares the solutions
For p = 4, E4 = c * h4 and the same with step size h/2, E4 = c * (h/2)4, that is if the
step size is halved the error is reduced by an order of 1/16.

Worked out problems

Example 1

Solve the initial value problem y' = -2xy2, y(0) = 1 for y at

x = 1 with step length 0.2 using Taylor series method of

order four.

Solution

Example 2

Using Taylor series method of order four solve the initial

value problem y' = (x - y)/2, on [0, 3] with y(0) = 1.

Compare solutions for h = 1, 1/2, 1/4 and 1/8.

Solution

Example 3
Using Taylor series method, find y(0.1) for y' = x - y2 , y(0)

= 1 correct upto four decimal places.
Solution

Example 4 Find y at x = 1.1 and 1.2 by solving y' = x2 + y2 , y(1) = 2.3 Solution

Taylor Series Methods: To derive these methods we start with a Taylor Expansion:
y(t + ∆t) ≈ y(t)+∆ty0 (t) + 1 2 ∆t 2 y00(t) + ... + 1 r! y(r) (t)∆t r . Let‘s say we want to
truncate this at the second derivative and base a method on that. The scheme is,
then: yn+1 = yn + fn∆t + f0 tn 2 ∆t 2 . The Taylor series method can be written as
yn+1 = yn + ∆tF(tn, yn, ∆t) where F = f + 1 2∆tf0 . If we take the LTE for this scheme,
we get (as expected) LT E(t) = y(tn + ∆t) − y(tn) ∆t − f(tn, y(tn)) − 1 2 ∆tf0 (tn, y(tn)) =
O(∆t 2). Of course, we designed this method to give us this order, so it shouldn‘t be
a surprise! So the LTE is reasonable, but what about the global error? Just as in the
Euler Forward case, we can show that the global error is of the same order as the
LTE. How do we do this? We have two facts, y(tn+1) = y(tn)+∆tF(tn, y(tn), ∆t), and
yn+1 = yn + ∆tF(tn, yn, ∆t) where F = f + 1 2∆tf0 . Now we subtract these two
|y(tn+1) − yn+1| = |y(tn) − yn + ∆t(F(tn, y(tn)) − F(tn, yn)) + ∆tLT E| ≤ |y(tn) − yn| +
∆t|F(tn, y(tn)) − F(tn, yn)| + ∆t|LT E| . Now, if F is Lipschitz continuous, we can say
en+1 ≤ (1 + ∆tL)en + ∆t|LT E|. Of course, this is the same proof as for Euler‘s
method, except that now we are looking at F, not f, and the LT E is of higher order.
We can do this no matter which Taylor series method we use, how many terms we
go forward before we truncate. Advantages and Disadvantages of the Taylor Series
Method: advantages a) One step, explicit b) can be high order c) easy to show that
global error is the same order as LTE disadvantages Needs the explicit form of
derivatives of f. 4 Runge-Kutta Methods To avoid the disadvantage of the Taylor
series method, we can use Runge-Kutta methods. These are still one step methods,
but they depend on estimates of the solution at different points. They are written out
so that they don‘t look messy: Second Order Runge-Kutta Methods: k1 = ∆tf(ti, yi) k2
= ∆tf(ti + α∆t, yi + βk1) yi+1 = yi + ak1 + bk2 let‘s see how we can chose the
parameters a,b, α, β so that this method has the highest order LT E possible. Take
the Taylor expansions to express the LTE: k1(t)=∆tf(t, y(t)) k2(t)=∆tf(t + α∆t, y +
βk1(t) = ∆t f(t, y(t) + ft(t, y(t))α∆t + fy(t, y(t))βk1(t) + O(∆t 2) LT E(t) = y(t + ∆t) − y(t)
∆t − a ∆t f(t, y(t))∆t − b ∆t (ft(t, y(t))α∆t + fy(t, y(t)βk1(t) + f(t, y(t)) ∆t + O(∆t 2) = y(t +
∆t) − y(t) ∆t − af(t, y(t)) − bf(t, y(t)) − bft(t, y(t))α − bfy(t, y(t)βf(t, y(t)) + O(∆t 2) = y0 (t)
+ 1 2 ∆ty00(t) − (a + b)f(t, y(t)) − ∆t(bαft(t, y(t)) + bβf(t, y(t))fy(t, y(t)) + O(∆t 2) = (1 −
a − b)f + (1 2 − bα)∆tft + (1 2 − bβ)∆tfyf + O(∆t 2) So we want a = 1 − b, α = β = 1 2b
. Fourth Order Runge-Kutta Methods: k1 = ∆tf(ti, yi) (1.3) k2 = ∆tf(ti + 1 2 ∆t, yi + 1 2
k1) (1.4) k3 = ∆tf(ti + 1 2 ∆t, yi + 1 2 k2) (1.5) k4 = ∆tf(ti + ∆t, yi + k3) (1.6) yi+1 = yi +
1 6 (k1 + k2 + k3 + k4) (1.7) The second order method requires 2 evaluations of f at

https://mat.iitm.ac.in/home/sryedida/public_html/caimna/ode/taylorseries/prob1.htm
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/ode/taylorseries/prob2.htm
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/ode/taylorseries/prob3.htm
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/ode/taylorseries/prob4.htm

every timestep, the fourth order method requires 4 evaluations of f at every timestep.
In general: For an rth order RungeKutta method we need S(r) evaluations of f for

7 5 Practically speaking, people stop at r = 5. Advantages of Runge-Kutta Methods
1. One step method – global error is of the same order as local error. 2. Don‘t need
to know derivatives of f. 3. Easy for ‖Automatic Error Control‖. Automatic Error
Control Uniform grid spacing – in this case, time steps – are good for some cases
but not always. Sometimes we deal with problems where varying the gridsize makes
sense. How do you know when to change the stepsize? If we have an rth order
scheme and and r + 1th order scheme, we can take the difference between these
two to be the error in the scheme, and make the stepsize smaller if we prefer a
smaller error, or larger if we can tolerate a larger error. For Automatic error control yo
are computing a ‖useless‖ (r+1)th order shceme . . . what a waste! But with Runge
Kutta we can take a fifth order method and a fourth order method, using the same
ks. only a little extra work at each step

Runge-Kutta Method :

Runge-Kutta method here after called as RK method is the generalization of the
concept used in Modified Euler's method.

In Modified Eulers method the slope of the solution curve has been approximated
with the slopes of the curve at the end points of the each sub interval in computing
the solution. The natural generalization of this concept is computing the slope by
taking a weighted average of the slopes taken at more number of points in each sub
interval. However, the implementation of the scheme differes from Modified Eulers
method so that the developed algorithm is explicit in nature. The final form of the
scheme is of the form

yi+1 = yi + (weighted average of the slopes) for i = 0, 1, 2 . . .
where h is the step length and yi and yi+1 are the values
of y at xi and xi+1 respectively.

In genaral, the slope is computed at various points xs in each sub interval [xi,
xi+1] and multiplied them with the step length h and then weighted average of it is
then added to yi to compute yi+1. Thus the RK method with v slopes called as v-
stage RKmethod can be written as

K1 = h f(xi, yi)
K2 = h f(xi + c2h, yi + a21K1)
K3 = h f(xi + c3h, yi + a31K1+ a32K2)
. . .
. . .
. . .

Kv = h f(xi + cvh, yi + av1K1+ av2K2 + . . . +avv-1Kv-1)
and

yi+1 = yi + (W1 K1 + W2 K2 + . . . + Wv Kv) for i = 0, 1, 2 . . .

To determine the parameters c's, a's and W's in the above equation, yi+1 defined in
the scheme is expanded interms of steplengh h and the resultant equation is then
compared with Taylor series expansion of the solution of the differential equation
upto a certain number of terms say p. Then the v-stage RKmethod will be of
order p or is an pth order RK method. Here for any v>4 the maximum possible
order p of the R Kmethod is always less than v. However, for any v lessthan or
equal to 4, it is possible derive an RK method of order p = v. Now, consider the case
v = 2 to derive the 2-stage RK method. For this

K1 = h f(xi, yi)
K2 = h f(xi + c2h, yi + a21K1)
yi+1 = yi + (W1 K1 + W2 K2) for i = 0, 1, 2 . . .

Now by Taylor series expansion

y(xi+1) = y(xi) + h y'(xi) + h2 y''(xi)/2! + h3 y'''(xi)/3! + o(h4)
 = y(xi) + h f + h2 (fx + fyf) / 2! + h3(fxx + 2fxyf + fyy f

2 + fy(fx + fyf)) / 3! +
o(h4)

Also

K1 = h fi
K2 = h f(xi + c2h, yi + a21K1)
 = h(fi + c2h fx + a21K1fy + (c2h)2 fxx /2! + (a21K1)

2 fyy /2! + c2h a21K1 fxy + o(h4))
 = h(fi + c2h fx + a21h fi fy + (c2h)2 fxx /2! + (a21h fi)

2 fyy /2! + c2h a21h
fi fxy + o(h4))
yi+1 = yi + (W1+W2) h fi + h2(W2c2fx + W2a21f fy) + h3 W2(c2

2a21f fxy + a2
21f

2 fyy)/2
+ o(h4)

Now by comparing the equal powers of h inyi+1and y(xi+1) we get

W1 + W2 = 1 c2W2 = 1/2 and a21W2 = 1/2

The solution of this system is

a21 = c2, W2 = 1/(2c2) and W1 = 1 - 1/(2c2)

where c2 is any arbitrary constant not equal to zero. For these values of a21, W2 ,
W1, since 2-stage RK method compares with Taylor series upto h2for any value
of c2 the 2-stage RK method is of order two and hence this scheme is denoted in
many text books as a second order RK method. Now, to give some numerical
values to a21, W2 , W1 first the valuec2 of has to be fixed. Generally the value of c2 is
fixed such that the values of a21, W2 , W1 are integers or some real numbers which
easy to remember. Two of such cases are c2 = 1/2 and c2=1.

Case (i): c2 = 1/2 a21= 1/2, W2 = 1, W1 = 0. The corresopnding 2-stage
(second order) RK method is

K1 = h f(xi, yi)
K2 = h f(xi + h/2, yi + K1 /2)
yi+1 = yi + (K2) for i = 0, 1, 2 . . .

or equivalently

yi+1 = yi + h f(xi + h/2, yi + h f(xi, yi) /2) for i = 0, 1, 2 . . .

Which is knothing but Eulers method with step length h = 1/2.

Case (ii): c2 = 1 a21= 2, W2 = W1 = 1/2. The corresopnding 2-stage
(second order) RK method is

K1 = h f(xi, yi)
K2 = h f(xi + h, yi + K1)
yi+1 = yi + (K1 + K2)/2 for i = 0, 1, 2 . . .
or equivalently

yi+1 = yi + .5 h (f(xi, yi) + f(xi + h, yi + h f(xi, yi))) for i = 0, 1, 2 . . .

Which is knothing but the Modified Eulers method.

Following the same procedure one can develope the higher order RK methods by
giving various values to v and comparing the obtained yi+1 with the same obtained by
Taylor series method. Classical RK methods of order three and four are

1
 RK method of order three

(v = 3)

 K1 = h f(xi, yi)

 K2 = h f(xi + h/2, yi + K1 /2)

 K3 = h f(xi + h, yi - K1 + 2K2)

 yi+1 = yi + (K1 + 4K2 + K3)/6

2
RK method of order three

(v = 4)

 K1 = h f(xi, yi)

 K2 = h f(xi + h/2, yi + K1 /2)

 K3 = h f(xi + h/2, yi + K2 /2)

 K4 = h f(xi + h, yi + K3)

 yi+1 = yi + (K1 + 2K2 + 2K3 + K4)/6

Worked out problems

Example 1

Find y(1.0) using RK method of order four by solving the

IVP y' = -2xy2, y(0) = 1 with step length 0.2. Also compre

the solution obtained with RK methods of order three and

two.

Solution

Example 2 Find y in [0,3] by solving the initial value problem y' = (x Solution

https://mat.iitm.ac.in/home/sryedida/public_html/caimna/ode/rk/prob.htm
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/ode/rk/prob.htm#pb2

- y)/2, y(0) = 1 using RK method of order four with h = 1/2

and 1/4.

Example 3
Using RK method of order four find y(0.1) for y' = x - y2,

y(0) = 1.
Solution

Example 4
Using RK method of order four find y at x = 1.1 and 1.2 by

solving y' = x2 + y2 , y(1) = 2.3
Solution

Runge-Kutta Methods

In the forward Euler method, we used the information on the slope or the derivative

of y at the given time step to extrapolate the solution to the next time-step. The LTE

for the method is O(h2), resulting in a first order numerical technique. Runge-Kutta

methods are a class of methods which judiciously uses the information on the 'slope'

at more than one point to extrapolate the solution to the future time step. Let's

discuss first the derivation of the second order RK method where the LTE is O(h3).

Given the IVP of Eq. 6, and a time step h, and the solution yn at the nth time step,
let's say that we wish to compute yn+1 in the following fashion:

 k1 = hf(yn,tn)

 yn+1 = yn + ak1 + bk2, (12)

where the constants , , a and b have to be evaluated so that the resulting

method has a LTE O(h3). Note that if k2=0 and a=1, then Eq. 13 reduces to the

forward Euler method.

Now, let's write down the Taylor series expansion of y in the neighborhood
of tn correct to the h2 term i.e.,

(13)

https://mat.iitm.ac.in/home/sryedida/public_html/caimna/ode/rk/prob.htm#pb3
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/ode/rk/prob.htm#pb4

However, we know from the IVP (Eq. 6) that dy/dt = f(y,t) so that

(14)

So from the above analysis, i.e., Eqs. 14 and 15, we get

(15)

However, the term k2 in the proposed RK method of Eq. 13 can be expanded correct

to O(h3) as

(16)

Now, substituting for k2 from Eq. 17 in Eq. 13, we get

(17)

Comparing the terms with identical coefficients in Eqs. 16 and 18 gives us the
following system of equations to determine the constants:

 a+b=1

(18)

There are infinitely many choices of a, b, and which satisfy Eq. 19, we can

choose for instance and a=b=1/2. With this choice, we have the

classical second order accurate Runge-Kutta method (RK2) which is summarized as

follows.

 k1 = hf(yn,tn)

 k2 = hf(yn+k1, tn + h)

(19

)

In a similar fashion Runge-Kutta methods of higher order can be developed. One of
the most widely used methods for the solution of IVPs is the fourth order Runge-
Kutta (RK4) technique. The LTE of this method is order h5. The method is given
below.

 k1 = hf(yn,tn)

 k2 = hf(yn+k1/2, tn + h/2)

 k4 = h(yn+k3, tn + h)

 yn+1 = yn + (k1 + 2k2 + 2k3 + k4)/6.

Last Updated: 16-09-2019

For a given differential equation with initial

condition
find the approximate solution using Predictor-Corrector method.

Predictor-Corrector Method :

The predictor-corrector method is also known as Modified-Euler method.
In the Euler method, the tangent is drawn at a point and slope is calculated for a given
step size. Thus this method works best with linear functions, but for other cases, there

https://en.wikipedia.org/wiki/Euler_method

remains a truncation error. To solve this problem the Modified Euler method is
introduced. In this method instead of a point, the arithmetic average of the slope over
an interval is used.
Thus in the Predictor-Corrector method for each step the predicted value of is
calculated first using Euler‘s method and then the slopes at the points and is
calculated and the arithmetic average of these slopes are added to to calculate the

corrected value of .

As, in this method, the average slope is used, so the error is reduced significantly.
Also, we can repeat the process of correction for convergence. Thus at every step, we
are reducing the error thus by improving the value of y.

Examples:

Input : eq = , y(0) = 0.5, step size(h) = 0.2
To find: y(1)
Output: y(1) = 2.18147
Explanation:

The final value of y at x = 1 is y=2.18147
Implementation: Here we are considering the differential

equation:

 C++

 Java

 Python3

 C#

 PHP

filter_none

edit

play_arrow

brightness_4
// C++ code for solving the differential equation

// using Predictor-Corrector or Modified-Euler method

// with the given conditions, y(0) = 0.5, step size(h) = 0.2

// to find y(1)

#include <bits/stdc++.h>

usingnamespacestd;

// consider the differential equation

// for a given x and y, return v

doublef(doublex, doubley)

{

 doublev = y - 2 * x * x + 1;

 returnv;

}

// predicts the next value for a given (x, y)

// and step size h using Euler method

doublepredict(doublex, doubley, doubleh)

{

 // value of next y(predicted) is returned

 doubley1p = y + h * f(x, y);

 returny1p;

}

// corrects the predicted value

// using Modified Euler method

doublecorrect(doublex, doubley,

 doublex1, doubley1,

 doubleh)

{

 // (x, y) are of previous step

 // and x1 is the increased x for next step

 // and y1 is predicted y for next step

 doublee = 0.00001;

 doubley1c = y1;

 do{

 y1 = y1c;

 y1c = y + 0.5 * h * (f(x, y) + f(x1, y1));

 } while(fabs(y1c - y1) > e);

 // every iteration is correcting the value

 // of y using average slope

 returny1c;

}

voidprintFinalValues(doublex, doublexn,

 doubley, doubleh)

{

 while(x < xn) {

 doublex1 = x + h;

 doubley1p = predict(x, y, h);

 doubley1c = correct(x, y, x1, y1p, h);

 x = x1;

 y = y1c;

 }

 // at every iteration first the value

 // of for next step is first predicted

 // and then corrected.

 cout << "The final value of y at x = "

 << x << " is : "<< y << endl;

}

intmain()

{

 // here x and y are the initial

 // given condition, so x=0 and y=0.5

 doublex = 0, y = 0.5;

 // final value of x for which y is needed

 doublexn = 1;

 // step size

 doubleh = 0.2;

 printFinalValues(x, xn, y, h);

 return0;

}

AUTOMATIC ERROR MONITORING

Exception/Error Monitoring is a process to monitor the log files generated by the
applications, events, and services to identify the errors or exceptions occurred in
the applications running. Exception/Error Monitoring helps in identifying the
errors by scanning the log files for specific keyword/text pattern and generate
alerts to notify the user.

Serious errors like OutOfMemoryError get logged into server's log files which
makes server not perform its usual operations in desired manner even though it
continues to run. The Exception/Error monitor will watch your server's log files
and alert you as soon as it finds pre-configured search conditions.

This tutorial provides a brief introduction on monitoring Log files using
AgentlessMonitor. This tutorial assumes that you have successfully installed
AgentlessMonitor.

Configuring Agentless Monitor to monitor Exception/Error in log files

Following steps will explain how you can configure AppPerfect Agentless Monitor
for Exception/Error Monitoring :

o Once you are logged into the Monitor Server you can see the Web-UI from
which you can access all the features of the Monitor Server. Click the
Monitors link from the left sidebar. This will take you to Monitors tab. Click on
Add button to Add a New Exception/Error Monitor.

o Next Step is to define the Exception/Error Monitor. Provide the IP Address or
Host Name of the system whose log files need to be monitored.

o Select the monitor type as Exception/Error Monitor to monitor Logs for errors
or exceptions.

o Specify a meaningful identifier for the monitor which will help identify the
monitor in future. AppPerfect also supports legacy agent-based architecture.
In case you need to use agent-based monitoring, AppPerfect can provide
agent for monitoring remote machine, in which case it requires the agent to
be deployed on remote machine running at a specific port.

o Specify the Data Fetch Interval which represents the time interval for which
application should wait before fetching the monitoring data from the device.
Monitoring Data will be fetched after every specified fetch interval. The
smaller the time interval, the more granular the data. However, smaller time
intervals also result in a much larger data set.

o You can specify if the monitor should be Active as soon as its added or
should it be in suspended state. You can also specify if all the attributes
should be monitored or only some predefined attributes should be monitored.

o Next Option is to provide server specific configuration settings. Provide the
log file(s) you want to monitor, message pattern and user credentials. You
can add some keywords to the whitelist, so the monitor will ignore those
patterns while monitoring. Once you are done providing the server settings,
click on Validate Connection button to confirm that the specified log file(s) on
the server is accessible.

o Next Step is to Select the Attributes to monitor. Exception/Error Monitoring
allows you to monitor the parameters such as lines read, exception summary,
match count etc. Select the parameters you need to monitor from the list of
attributes shown.

o Next step shows the Attribute details of all the selected attributes in the
previous step. You can customize the display labels for each of the attributes
here. You can change the label for time from milliseconds to microseconds.

o Next step shows the Attribute Data conversion where you can convert the
attribute value to required unit. You can configure the operation which should
be performed on the attribute value to create the final output value.

o Next step shows the Defining Rules view. This view will provide a list of all
numeric attributes. You can select the attributes for which you want to add a
rule. A rule is defined as a conditional or threshold value which when
exceeds, a notification would be sent. In a typical workflow the monitors

extract data from the monitored device and send it to the rules engine. The
rules engine evaluates the data to ensure no rule is violated and then sends it
to the view manager. However, if a rule is violated, a message is immediately
sent to the notification server to alert the user about the rule violation.Rules
can be defined at a later stage as well. For details on how you can add/edit
rules for the monitor, please see the Rules chapter.

o Next step shows the Security & Notification settings. When a rule is violated a
notification is sent out to all the concerned users that a particular event has
occurred and needs to be dealt with. This process is called notification.
AppPerfect provides five modes of notification. They are Email notification,
SMS notification, Custom notification, Log notification, Database notification,
SNMP Trap notification. For details on each of the supported notification ,
please see the Notification chapter. In this view you can configure the type of
notification which should be sent on Rule violation, Users/Groups to whom
notification should be sent and also the subject and details on the notification
message.

Click on finish button. We are done adding the monitor for Exception/Error
Monitoring. Once Exception/Error Monitor is added, you will get a message
Exception/Error Monitor added successfully. Now go to Status. Expand the data
for IP provided in IP Address while creating the monitor. Expand Exception/Error
monitor. Click on + icon against the charts that you want to monitor in your
Dashboard.

Stabilityof solution

In mathematics, condition in which a slight disturbance in a system does not produce
too disrupting an effect on that system. In terms of the solution of a differential
equation, a function f(x) is said to be stable if any other solution of the equation that
starts out sufficiently close to it when x = 0 remains close to it for succeeding values
of x. If the difference between the solutions approaches zero as x increases, the
solution is called asymptotically stable. If a solution does not have either of these
properties, it is called unstable.

For example, the solution y = ce-x of the equation y′ = -y is asymptotically stable,
because the difference of any two solutions c1e

-x and c2e
-x is (c1 - c2)e

-x, which
always approaches zero as x increases. The solution y = cex of the equation y′ = y,
on the other hand, is unstable, because the difference of any two solutions is (c1 -
 c2)e

x, which increases without bound as x increases. A given equation can have
both stable and unstable solutions. For example, the equation y′ = -y(1 - y)(2 - y) has
the solutions y = 1, y = 0, y = 2, y = 1 + (1 + c2e-2x)-1/

2, and y = 1 - (1 + c2e-2x)-

1/
2 (see Graph). All these solutions except y = 1 are stable because they all approach

the lines y = 0 or y = 2 as x increases for any values of c that allow the solutions to
start out close together. The solution y = 1 is unstable because the difference
between this solution and other nearby ones is (1 + c2e-2x)-1/

2, which increases to 1
as x increases, no matter how close it is initially to the solution y = 1.

http://www.appperfect.com/support/docs/agentless-monitor/admin-guide/monitor/rules.html
http://www.appperfect.com/support/docs/agentless-monitor/admin-guide/monitor/notification.html
https://www.britannica.com/science/mathematics
https://www.britannica.com/science/differential-equation
https://www.britannica.com/science/differential-equation
https://www.britannica.com/science/equation

Encyclopædia Britannica, Inc.

Stability of solutions is important in physical problems because if slight deviations
from the mathematical model caused by unavoidable errors in measurement do not
have a correspondingly slight effect on the solution, the mathematical equations
describing the problem will not accurately predict the future outcome. Thus, one of
the difficulties in predicting population growth is the fact that it is governed by the
equation y = axce, which is an unstable solution of the equation y′ = ay. Relatively
slight errors in the initial population count, c, or in the breeding rate, a, will cause
quite large errors in prediction, even if no disturbing influences
occur.In mathematics, stability theory addresses the stability of solutions
of differential equations and of trajectories of dynamical systems under small
perturbations of initial conditions. The heat equation, for example, is a stable partial
differential equation because small perturbations of initial data lead to small
variations in temperature at a later time as a result of the maximum principle. In
partial differential equations one may measure the distances between functions
using Lp norms or the sup norm, while in differential geometry one may measure the
distance between spaces using the Gromov–Hausdorff distance.

In dynamical systems, an orbit is called Lyapunov stable if the forward orbit of any
point is in a small enough neighborhood or it stays in a small (but perhaps, larger)
neighborhood. Various criteria have been developed to prove stability or instability of
an orbit. Under favorable circumstances, the question may be reduced to a well-
studied problem involving eigenvalues of matrices. A more general method
involves Lyapunov functions. In practice, any one of a number of different stability
criteria are applied.

The equilibrium points are determined as follows:

x˙00=f(x),=f(xe),=−x3⟹xe=0.

The equilibrium point xe=0 is stable or attractive because the two black arrows are

heading toward the equilibrium point (i.e. the origin). The direction of the arrows are

determined based on the positivity or negativity of x˙. If the differential equation is

https://www.britannica.com/science/mathematical-model
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Heat_equation
https://en.wikipedia.org/wiki/Maximum_principle
https://en.wikipedia.org/wiki/Lp_space
https://en.wikipedia.org/wiki/Gromov%E2%80%93Hausdorff_convergence
https://en.wikipedia.org/wiki/Orbit_(dynamics)
https://en.wikipedia.org/wiki/Lyapunov_stability
https://en.wikipedia.org/wiki/Eigenvalue
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Lyapunov_function
https://en.wikipedia.org/wiki/Stability_criterion
https://en.wikipedia.org/wiki/Stability_criterion
https://cdn.britannica.com/16/4416-004-434514E3/solutions.jpg

positive as the case with this example when x<0, the trajectory moves to the right

and vise versa. See the below picture,

In order to show whether the equilibrium point is asymptotically stable, the
equilibrium point must be stable and convergent. We've just shown that the
equilibrium point is stable. The equilibrium point is convergent if the trajectory goes
to zero as time goes to infinity. The analytical solution for the ode is, assuming the
initial time is zero (i.e. t0=0):

x(t)=±x2(0)1+2x2(0)t−−−−−−−−−−√

As time goes to infinity, the trajectory indeed goes to zero, therefore, the system is
asymptotically stable (i.e. it is stable and convergent). The system is also globally
asymptotically stable. Globally because starting from any initial value, the trajectory
goes to zero as time goes to infinity. Sometimes not all initial values make the
trajectory goes to zero as time goes to infinity that is the trajectory will blow with
some initial values. If this is the case, the stability of the system
is locally asymptotically stable.

https://i.stack.imgur.com/NVEED.png

