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NUMERICAL TECHNIQUES LAB 

 

Write programs in C 

• To implement floating point arithmetic operations i.e., addition, subtraction, 

multiplication and division. 

• To deduce errors involved in polynomial interpolation. Algebraic and trancedental 

equations using Bisection, Newton Raphson, 

Iterative, method of false position, rate of conversions of roots in tabular form for each of 

these methods. 

• To implement formulae by Bessels, Newton, Stirling, Langranges etc. 

• To implement method of least square curve fitting. 

• Implement numerical differentiation. 

• Implement numerical integration using Simpson's 1/3 and 3/8 rules, trapezoidal rule. 

• To show frequency chart, regression analysis, Linear square fit, and polynomial fit. 

 

 

 

 

 

 

 

 

 

 

 

 



Unit-I 

 

Floating point Arithmetic 

Representation of floating point numbers 

1. To convert the floating point into decimal, we have 3 elements in a 32-bit floating 
point representation:  
 
    i) Sign  
 
    ii) Exponent  
 
    iii) Mantissa  
  

 Sign bit is the first bit of the binary representation. ‗1‘ implies negative number 
and ‗0‘ implies positive number.  
 
Example: 11000001110100000000000000000000 This is negative number. 
 

 Exponent is decided by the next 8 bits of binary representation. 127 is the 
unique number for 32 bit floating point representation. It is known as bias. It is 
determined by 2k-1 -1 where ‗k‘ is the number of bits in exponent field.  
There are 3 exponent bits in 8-bit representation and 8 exponent bits in 32-bit 
representation. 

Thus 

bias = 3 for 8 bit conversion (23-1 -1 = 4-1 = 3)  
bias = 127 for 32 bit conversion. (28-1 -1 = 128-1 = 127)  
 
 
Example: 01000001110100000000000000000000  
10000011 = (131)10  
131-127 = 4  
Hence the exponent of 2 will be 4 i.e. 24 = 16. 

 Mantissa is calculated from the remaining 23 bits of the binary representation. It 
consists of ‗1‘ and a fractional part which is determined by:  
Example:  
01000001110100000000000000000000  

The fractional part of mantissa is given by:  

1*(1/2) + 0*(1/4) + 1*(1/8) + 0*(1/16) +……… = 0.625  

Thus the mantissa will be 1 + 0.625 = 1.625  

The decimal number hence given as: Sign*Exponent*Mantissa = (-
1)0*(16)*(1.625) = 26 
 



2. To convert the decimal into floating point, we have 3 elements in a 32-bit floating 
point representation:  
 
    i) Sign (MSB)  
 
    ii) Exponent (8 bits after MSB)  
 
    iii) Mantissa (Remaining 23 bits)  
 
  
 Sign bit is the first bit of the binary representation. ‗1‘ implies negative number 

and ‗0‘ implies positive number.  
 
Example: To convert -17 into 32-bit floating point representation Sign bit = 1 

 Exponent is decided by the nearest smaller or equal to 2n number. For 17, 16 is 
the nearest 2n. Hence the exponent of 2 will be 4 since 24 = 16. 127 is the 
unique number for 32 bit floating point representation. It is known as bias. It is 
determined by 2k-1 -1 where ‗k‘ is the number of bits in exponent field.  
Thus bias = 127 for 32 bit. (28-1 -1 = 128-1 = 127)  
 
 
Now, 127 + 4 = 131 i.e. 10000011 in binary representation. 

 Mantissa: 17 in binary = 10001. 
Move the binary point so that there is only one bit from the left. Adjust the 
exponent of 2 so that the value does not change. This is normalizing the number. 
1.0001 x 24. Now, consider the fractional part and represented as 23 bits by 
adding zeros. 
00010000000000000000000 

Operations 

An operation, in mathematics and computer science, is an action that is carried out 

to accomplish a given task. There are five basic types of computer operations: 

Inputting, processing, outputting, storing, and controlling. 

Although even basic computers are capable of sophisticated 

processing, processors themselves are only capable of performing simple 

mathematical operations. CPUs perform very complex tasks by executing billions of 

individual operations per second. 

When we think of computer operations, we‘re usually thinking of those involved in 

processing. The arithmetic-logic unit (ALU) in the processor performs arithmetic and 

logic operations on the operands according to instructions that specify each step that 

must be taken to make the software do something.  

https://whatis.techtarget.com/definition/processor
https://whatis.techtarget.com/definition/processor
https://whatis.techtarget.com/definition/arithmetic-logic-unit-ALU
https://whatis.techtarget.com/definition/operand
https://whatis.techtarget.com/definition/instruction


The arithmetic operations are addition, subtraction, multiplication, and 

division.  There are sixteen possible logic (or symbolic) operators used to perform 

tasks such as comparing two operands and detecting where bits don‘t 

match. Boolean operators, which work with true/false values, include AND, OR, NOT 

(or AND NOT) and NEAR. Relational operators, used for comparisons, include the 

equal sign (=), the less-than symbol (<) and the greater-than symbol (>). 

The ALU usually has direct input and output access to the processor controller, main 

memory RAM and input/output devices. Inputs and outputs flow through the 

system bus. The input consists of an instruction word that contains an operation 

code, one or more operands and sometimes a format code.  

 Normalization 

Normalization is the process of reorganizing data in a database so that it meets two 
basic requirements: 

1. There is no redundancy of data, all data is stored in only one place. 
 

2. Data dependencies are logical all related data items are stored together. 

Normalization is important for many reasons, but chiefly because it allows databases 
to take up as little disk space as possible, resulting in increased performance. 

Normalization is also known as data normalization. 

The first goal during data normalization is to detect and remove all duplicate data by 
logically grouping data redundancies together. Whenever a piece of data is 
dependent on another, the two should be stored in proximity within that data set. 

By getting rid of all anomalies and organizing unstructured data into a structured 
form, normalization greatly improves the usability of a data set. Data can be 
visualized more easily, insights could be extracted more efficiently, and information 
can be updated more quickly. As redundancies are merged together, the risk of 
errors and duplicates further making data even more disorganized is reduced. On 
top of all that, a normalized database takes less space, getting rid of many disk 
space problems, and increasing its overall performance significantly. 

The three main types of normalization are listed below. Note: "NF" refers to "normal 
form." 

First normal form (1NF) 

Tables in 1NF must adhere to some rules: 

 Each cell must contain only a single (atomic) value. 
 

https://whatis.techtarget.com/definition/operator
https://whatis.techtarget.com/definition/Boolean
https://searchstorage.techtarget.com/definition/RAM-random-access-memory
https://searchstorage.techtarget.com/definition/bus
https://whatis.techtarget.com/definition/word


 Every column in the table must be uniquely named. 
 

 All values in a column must pertain to the same domain. 

Second normal form (2NF) 

Tables in 2NF must be in 1NF and not have any partial dependency (e.g. every non-
prime attribute must be dependent on the table‘s primary key). 

Third normal form (3NF) 

Tables in 3NF must be in 2NF and have no transitive functional dependencies on the 
primary key. 

The following two NFs also exist but are rarely used: 

Boyce-Codd Normal Form (BCNF) 

A higher version of the 3NF, the Boyce-Codd Normal Form is used to address the 
anomalies which might result if one more than one candidate key exists. Also known 
as 3.5 Normal Form, the BCNF must be in 3NF and in all functional dependencies ( 
X → Y ), X should be a super key. 

Fourth Normal Form (4NF) 

For a table to in 4NF, it must be in BCNF and not have a multi-valued dependency. 

The first three NFs were derived in the early 1970s by the father of the relational 
data model, E.F. Codd. Almost all of today's relational database engines use his 
rules. 

Some relational database engines do not strictly meet the criteria for all rules of 
normalization. An example is the multivalued fields feature introduced by Microsoft in 
the Access 2007 database application. There has been heated debate in database 
circles as to whether such features now disqualify such applications from being true 
relational database management systems. 

Pitfalls of floating point representation 

There are posts on representation of floating point format. The objective of this article 
is to provide a brief introduction to floating point format. 

The following description explains terminology and primary details of IEEE 754 binary 
floating point representation. The discussion confines to single and double precision 
formats. 

Usually, a real number in binary will be represented in the following format, 

ImIm-1…I2I1I0.F1F2…FnFn-1 
Where Im and Fn will be either 0 or 1 of integer and fraction parts respectively. 
 



 
 
A finite number can also represented by four integers components, a sign (s), a base 
(b), a significand (m), and an exponent (e). Then the numerical value of the number is 
evaluated as 

(-1)s x m x be ________ Where m < |b| 
Depending on base and the number of bits used to encode various components, 
the IEEE 754 standard defines five basic formats. Among the five formats, the 
binary32 and the binary64 formats are single precision and double precision formats 
respectively in which the base is 2. 
 

Table – 1 Precision Representation 
 

Precision Base Sign Exponent Significand 

Single precision 2 1 8 23+1 

Double precision 2 1 11 52+1 

 
Single Precision Format: 
 
As mentioned in Table 1 the single precision format has 23 bits for significand (1 
represents implied bit, details below), 8 bits for exponent and 1 bit for sign. 

For example, the rational number 9÷2 can be converted to single precision float format 
as following, 

9(10) ÷ 2(10) = 4.5(10) = 100.1(2) 
 
 
 
The result said to be normalized, if it is represented with leading 1 bit, i.e. 1.001(2) x 
22. (Similarly when the number 0.000000001101(2) x 23 is normalized, it appears as 
1.101(2) x 2-6). Omitting this implied 1 on left extreme gives us the mantissa of float 
number. A normalized number provides more accuracy than corresponding de-
normalized number. The implied most significant bit can be used to represent even 
more accurate significand (23 + 1 = 24 bits) which is 
called subnormal representation. The floating point numbers are to be represented in 
normalized form. 
 
The subnormal numbers fall into the category of de-normalized numbers. The 
subnormal representation slightly reduces the exponent range and can‘t be normalized 
since that would result in an exponent which doesn‘t fit in the field. Subnormal 
numbers are less accurate, i.e. they have less room for nonzero bits in the fraction 
field, than normalized numbers. Indeed, the accuracy drops as the size of the 

http://en.wikipedia.org/wiki/IEEE_754-2008


subnormal number decreases. However, the subnormal representation is useful in 
filing gaps of floating point scale near zero. 

In other words, the above result can be written as (-1)0 x 1.001(2) x 22 which yields the 
integer components as s = 0, b = 2, significand (m) = 1.001, mantissa = 001 and e = 2. 
The corresponding single precision floating number can be represented in binary as 
shown below, 
 

 

 
Where the exponent field is supposed to be 2, yet encoded as 129 (127+2) 
called biased exponent. The exponent field is in plain binary format which also 
represents negative exponents with an encoding (like sign magnitude, 1‘s 
complement, 2‘s complement, etc.). The biased exponent is used for the 
representation of negative exponents. The biased exponent has advantages over 
other negative representations in performing bitwise comparing of two floating point 
numbers for equality. 
 
A bias of (2n-1 – 1), where n is # of bits used in exponent, is added to the exponent (e) 
to get biased exponent (E). So, the biased exponent (E) of single precision number 
can be obtained as 

E = e + 127 
 

The range of exponent in single precision format is -128 to +127. Other values are 
used for special symbols. 

Note: When we unpack a floating point number the exponent obtained is the biased 
exponent. Subtracting 127 from the biased exponent we can extract unbiased 
exponent. 
 
Double Precision Format: 
 
As mentioned in Table – 1 the double precision format has 52 bits for significand (1 
represents implied bit), 11 bits for exponent and 1 bit for sign. All other definitions are 
same for double precision format, except for the size of various components. 

 
Precision: 
 



The smallest change that can be represented in floating point representation is called 
as precision. The fractional part of a single precision normalized number has exactly 
23 bits of resolution, (24 bits with the implied bit). This corresponds to log(10) (2

23) = 
6.924 = 7 (the characteristic of logarithm) decimal digits of accuracy. Similarly, in case 
of double precision numbers the precision is log(10) (2

52) = 15.654 = 16 decimal digits. 
 
Accuracy: 
 
Accuracy in floating point representation is governed by number of significand bits, 
whereas range is limited by exponent. Not all real numbers can exactly be represented 
in floating point format. For any numberwhich is not floating point number, there are 
two options for floating point approximation, say, the closest floating point number less 
than x as x_ and the closest floating point number greater than x as x+. 
A rounding operation is performed on number of significant bits in the mantissa field 
based on the selected mode. The round down mode causes x set to x_, the round 
up mode causes x set to x+, the round towards zero mode causes x is either x_ or 
x+ whichever is between zero and. The round to nearest mode sets x to x_ or x+ 
whichever is nearest to x. Usually round to nearest is most used mode. The 
closeness of floating point representation to the actual value is called as accuracy. 
Special Bit Patterns: 
 
The standard defines few special floating point bit patterns. Zero can‘t have most 
significant 1 bit, hence can‘t be normalized. The hidden bit representation requires a 
special technique for storing zero. We will have two different bit patterns +0 and -0 for 
the same numerical value zero. For single precision floating point representation, 
these patterns are given below, 
 

0 00000000 00000000000000000000000 = +0 

1 00000000 00000000000000000000000 = -0 

Similarly, the standard represents two different bit patters for +INF and -INF. The 
same are given below, 

 
 
 
0 11111111 00000000000000000000000 = +INF 

1 11111111 00000000000000000000000 = -INF 

All of these special numbers, as well as other special numbers (below) are subnormal 
numbers, represented through the use of a special bit pattern in the exponent field. 
This slightly reduces the exponent range, but this is quite acceptable since the range 
is so large. 

An attempt to compute expressions like 0 x INF, 0 ÷ INF, etc. make no mathematical 
sense. The standard calls the result of such expressions as Not a Number (NaN). Any 
subsequent expression with NaN yields NaN. The representation of NaN has non-zero 
significand and all 1s in the exponent field. These are shown below for single precision 
format (x is don‘t care bits), 

x 11111111 1m0000000000000000000000 



Where m can be 0 or 1. This gives us two different representations of NaN. 
0 11111111 110000000000000000000000 _____________ Signaling NaN (SNaN) 

0 11111111 100000000000000000000000 _____________Quiet NaN (QNaN) 

Usually QNaN and SNaN are used for error handling. QNaN do not raise any 
exceptions as they propagate through most operations. Whereas SNaN are which 
when consumed by most operations will raise an invalid exception. 

Overflow and Underflow: 
 
Overflow is said to occur when the true result of an arithmetic operation is finite but 
larger in magnitude than the largest floating point number which can be stored using 
the given precision. Underflow is said to occur when the true result of an arithmetic 
operation is smaller in magnitude (infinitesimal) than the smallest normalized floating 
point number which can be stored. Overflow can‘t be ignored in calculations whereas 
underflow can effectively be replaced by zero. 
 
Endianness: 
 
The IEEE 754 standard defines a binary floating point format. The architecture details 
are left to the hardware manufacturers. The storage order of individual bytes in binary 
floating point numbers varies from architecture to architecture. 

Errors in numerical computation 

Many engineering problems are too time consuming to solve or may not be able to 
be solved analytically. In these situations, numerical methods are usually employed. 
Numerical methods are techniques designed to solve a problem using numerical 
approximations. An example of an application of numerical methods is trying to 
determine the velocity of a falling object. If you know the exact function that 
determines the position of your object, then you could potentially differentiate the 
function to obtain an expression for the velocity. More often, you will use a machine 
to record readings of times and positions that you can then use to numerically solve 
for velocity: 

 

where f is your function, t is the time of the reading, and h is the distance to the next 
time step. 
Because your answer is an approximation of the analytical solution, there is an 
inherent error between the approximated answer and the exact solution. Errors can 
result prior to computation in the form of measurement errors or assumptions in 
modeling. The focus of this blog post will be on understanding two types of errors 
that can occur during computation: roundoff errors and truncation errors. 



Roundoff Error 

Roundoff errors occur because computers have a limited ability to represent 
numbers. For example, π has infinite digits, but due to precision limitations, only 16 
digits may be stored in MATLAB. While this roundoff error may seem insignificant, if 
your process involves multiple iterations that are dependent on one another, these 
small errors may accumulate over time and result in a significant deviation from the 
expected value. Furthermore, if a manipulation involves adding a large and small 
number, the effect of the smaller number may be lost if rounding is utilized. Thus, it is 
advised to sum numbers of similar magnitudes first so that smaller numbers are not 
―lost‖ in the calculation. 

One interesting example that we covered in my Engineering Computation class, that 
can be used to illustrate this point, involves the quadratic formula. The quadratic 
formula is represented as follows: 

 

Using a = 0.2, b = – 47.91, c = 6 and if we carry out rounding to two decimal places 
at every intermediate step: 

 

The error between our approximations and true values can be found as follows: 



 

As can be seen, the smaller root has a larger error associated with it because 
deviations will be more apparent with smaller numbers than larger numbers. 

If you have the insight to see that your computation will involve operations with 
numbers of differing magnitudes, the equations can sometimes be cleverly 
manipulated to reduce roundoff error. In our example, if the quadratic formula 
equation is rationalized, the resulting absolute error is much smaller because fewer 
operations are required and numbers of similar magnitudes are being multiplied and 
added together: 

 



Truncation Error 

Truncation errors are introduced when exact mathematical formulas are represented 
by approximations. An effective way to understand truncation error is through a 
Taylor Series approximation. Let‘s say that we want to approximate some function, 
f(x) at the point xi+1, which is some distance, h, away from the basepoint xi, whose 
true value is shown in black in Figure 1. The Taylor series approximation starts with 
a single zero order term and as additional terms are added to the series, the 
approximation begins to approach the true value. However, an infinite number of 
terms would be needed to reach this true value. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1: Graphical representation of a Taylor Series approximation (Chapra, 2017) 

The Taylor Series can be written as follows: 

 

where Rn is a remainder term used to account for all of the terms that were not 
included in the series and is therefore a representation of the truncation error. The 
remainder term is generally expressed as Rn=O(hn+1) which shows that truncation 
error is proportional to the step size, h, raised to the n+1 where n is the number of 
terms included in the expansion. It is clear that as the step size decreases, so does 
the truncation error. 
The Tradeoff in Errors 

The total error of an approximation is the summation of roundoff error and truncation 
error. As seen from the previous sections, truncation error decreases as step size 
decreases. However, when step size decreases, this usually results in the necessity 
for more precise computations which consequently results in an increase in roundoff 
error. Therefore, the errors are in direct conflict with one another: as we decrease 
one, the other increases. 

However, the optimal step size to minimize error can be determined. Using an 
iterative method of trying different step sizes and recording the error between the 
approximation and the true value, the following graph shown in Figure 2 will result. 
The minimum of the curve corresponds to the minimum error achievable and 
corresponds to the optimal step size. Any error to the right of this point (larger step 
sizes) is primarily due to truncation error and the increase in error to the left of this 
point corresponds to where roundoff error begins to dominate. While this graph 
is specific to a certain function and type of approximation, the general rule and shape 
will still hold for other cases. 



 

Figure 2: Plot of Error vs. Step Size (Chapra, 2017) 

Hopefully this blog post was helpful to increase awareness of the types of errors that 
you may come across when using numerical methods! Internalize these golden rules 
to help avoid loss of significance: 

 Avoid subtracting two nearly equal numbers 
 

 If your equation has large and small numbers, work with smaller numbers first 
 

 Consider rearranging your equation so that numbers of a similar magnitude 
are being used in an operation 
 
 
 
 
 
 
 
 



UNIT-II 
 

 
Iterative Methods 

 
Zeros of a single transcendental equation and zeros of polynomial using 

Bisection Method, 

Bisection method is the simplest among all the numerical schemes to solve the 

transcendental equations. This scheme is based on the intermediate value theorem 

for continuous functions . 

Consider a transcendental equation f (x) = 0  which has a zero in the interval [a,b] 
and f (a) * f (b) < 0. Bisection scheme computes the zero, say c, by repeatedly 
halving the interval [a,b]. That is, starting with  

c = (a+b) / 2 

the interval [a,b] is replaced either with [c,b] or with [a,c] depending on the sign of f 
(a) * f (c) . This process is continued until the zero is obtained. Since the zero is 
obtained numerically the value of c may not exactly match with all the decimal places 
of the analytical solution of f (x) = 0 in the interval [a,b]. Hence any one of the 
following mechanisms can be used to stop the bisection iterations : 

interval or the maximum error after N iterations in this case is less than | b-a | / 2N. 

 testing the condition  | ci - c i-1| (where i are the iteration number) less than 
some tolerance limit, say epsilon, fixed a priori.  

i ) | less than some tolerance limit alpha again 
fixed a priori. 

 

Algorithm - Bisection Scheme 

Given a function f (x) continuous on an interval [a,b] and f (a) * f (b) 
< 0  
Do  
       c = (a+b)/2  
       if f (a) * f (c) < 0 then  b = c  
                             else  a = c  
while (none of the convergence criteria C1, C2 or C3 is satisfied) 

 

  

https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/bisection.html
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/bisection.html


Numerical Example : 

Find a root of   f (x) = 3x + sin(x) - exp(x) = 0.  

The graph of this equation is given in the figure. 

Its clear from the graph that there are two roots, 
one lies between  0  and  0.5  and the other lies 
between 1.5 and 2.0. 

Consider  the function  f (x)  in   the   interval  [0, 
0.5]  since  f (0) * f (0.5) is less than zero. 

Then the bisection iterations are given by 

 

Iteration  

No. 
a b c f(a) * f(c) 

1 0 0.5 0.25 0.287 (+ve) 

2 0.25 0.5 0.393 -0.015 (-ve) 

3 0.65 0.393 0.34 9.69 E-3 (+ve) 

4 0.34 0.393 0.367 -7.81 E-4 (-ve) 

5 0.34 0.367 0.354 8.9 E-4 (+ve) 

6 0.354 0.367 0.3605 -3.1 E-6 (-ve) 

 

So one of the roots of 3x + sin(x) - exp(x) = 0 is approximately 0.3605. 

 

Worked out problems 

 Exapmple 1  Find a root of cos(x) - x * exp(x) = 0  Solution 

 Exapmple 2  Find a root of x4-x-10 = 0  Solution 

 Exapmple 3  Find a root of x-exp(-x) = 0  Solution 

 Exapmple 4  Find a root of exp(-x) * (x2-5x+2) + 1= 0  Solution 

 Exapmple 5  Find a root of x-sin(x)-(1/2)= 0  Solution 

 Exapmple 6  Find a root of exp(-x) = 3log(x)  Solution 

Problems to workout  

 

https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/example1.html#exp1
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/example2.html#exp2
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/example3.html#exp3
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/example4.html#exp4
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/example5.html#exp5
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/example6.html#exp6
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/bracketing%20methods/bisection/example6.html#exercise%20problems


Iteration Method 

Considerable attention has been devoted to the study of the fractional calculus 

during the past three decades and its numerous applications in the area of physics 

and engineering. The applications of fractional calculus used in many fields such as 

electrical networks, control theory of dynamical systems, probability and statistics, 

electrochemistry, chemical physics, optics, and signal processing can be 

successfully modelled by linear or nonlinear fractional differential equations. 

So far there have been several fundamental works on the fractional derivative and 

fractional differential equations [1–3]. These works are to be considered as an 

introduction to the theory of fractional derivative and fractional differential equations 

and provide a systematic understanding of the fractional calculus such as the 

existence and uniqueness [4, 5]. Recently, many other researchers have paid 

attention to existence result of solution of the initial value problem and boundary 

problem for fractional differential equations [4–6]. 

Finding approximate or exact solutions of fractional differential equations is an 

important task. Except for a limited number of these equations, we have difficulty in 

finding their analytical solutions. Therefore, there have been attempts to develop 

new methods for obtaining analytical solutions which reasonably approximate the 

exact solutions. Several such techniques have drawn special attention, such as 

Adomain‘s decomposition method [7], homotopy perturbation method [8–10], 

homotopy analysis method [11, 12], variational iteration method [13–17], Chebyshev 

spectral method [18, 19], and new iterative method [20–22]. Among them, the new 

iterative method provides an effective procedure for explicit and numerical solutions 

of a wide and general class of differential systems representing real physical 

problems. The new iterative method is more superior than the other nonlinear 

methods, such as the perturbation methods where this method does not depend on 

small parameters, such that it can find wide application in nonlinear problems without 

linearization or small perturbation. 

The motivation of this paper is to extend the application of the new iterative method 

proposed by Daftardar-Gejji and Jafari [20–22] to solve linear and nonlinear ordinary 

and partial differential equations of fractional order. This motivation is based on the 

importance of these equations and their applications in various subjects in physical 

branches [10, 11, 14, 23–25]. 

There are several definitions of a fractional derivative of order  [3, 26]. The two most 

commonly used definitions are Riemann-Liouville and Caputo. Each definition uses 

Riemann-Liouville fractional integration and derivative of whole order. The difference 

between the two definitions is in the order of evaluation. Riemann-Liouville fractional 

integration of order  is defined asThe next two equations define Riemann-Liouville 

and Caputo fractional derivatives of order ,  respectively, aswhere ,  . 

Caputo fractional derivative first computes an ordinary derivative followed by a 

fractional integral to achieve the desired order of fractional derivative. Riemann-

Liouville fractional derivative is computed in the reverse order. Therefore, Caputo 



fractional derivative allows traditional initial and boundary conditions to be included in 

the formulation of the problem. 

From properties of   and ,  it is important to note thatwhere   is Caputo derivative 

operator of order , 

2. Basic Idea of New Iterative Method 

 

For the basic idea of the new iterative method, we consider the following general 

functional equation [20–22]:where  is a nonlinear operator from a Banach 

space  and   is a known function. We have been looking for a solution of (4) having 

the series formThe nonlinear operator  can be decomposed asFrom (5) and (6), (4) 

is equivalent toWe define the following recurrence relation:Then,If ,  , thenand the 

series  absolutely and uniformly converges to a solution of (4) [27], which is unique, 

in view of the Banach fixed point theorem [28]. The n-term approximate solution of 

(4) and (5) is given by  

2.1. Convergence of the Method 

Now we analyze the convergence of the new iterative method for solving any general 

functional equation (4). Let , where  is the exact solution,  is the approximate 

solution, and  is the error in the solution of (4); obviously  satisfies (4), that is,and the 

recurrence relation (8) becomesIf ,  , thenThus  as , which proves the convergence of 

the new iterative method for solving the general functional equation (4). For more 

details, you can see [29]. 

3. Suitable Algorithm 

 

In this section, we introduce a suitable algorithm for solving nonlinear partial 

differential equations using the new iterative method. Consider the following 

nonlinear partial differential equation of arbitrary order:where  is a nonlinear function 

of  and  (partial derivatives of  with respect to  and ) and  is the source function. In 

view of the new iterative method, the initial value problem (14a) and (14b) is 

equivalent to the integral equationwhere 

Remark 1. When the general functional equation (4) is linear, the recurrence relation 

(8) can be simplified in the form 

Proof. From the properties of integration and by using (8) and (16b), we 

haveTherefore, we get the solution of (15) by employing the recurrence relation (8) 

or (17). 
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4. Applications 

To illustrate the effectiveness of the proposed method, several test examples are 

carried out in this section. 

Example 2. In this example, we consider the following initial value problem in the 

case of the inhomogeneous Bagely-Torvik equation [23, 24]:where . The exact 

solution of this problem is . 

 

By applying the technique described in Sections 2 and 3, the initial value problem 

(19) is equivalent to the integral equation 

 

Let . In view of recurrence relation (17), we have the following first 

approximations:and so on. In the same manner the rest of components can be 

obtained. The 6-term approximate solution for (19) is 

 

Remark 3. In Example 2. we have used the recurrence relation (17). If we used the 

recurrence relation (8) in place of (17), we obtain the same result. 

In Figure 1, we have plotted the 6-term approximate solution with the corresponding 

exact solution for (19). It is remarkable to note that the two solutions are almost 

equal. 
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Figure 1  

Plots of the approximate solution and the exact solution for (19). 

Comparing these obtained results with those obtained by new Jacobi operational 

matrix in [23, 24], we can confirm the simplicity and accuracy of the given method. 

Example 4. Consider the following fractional Riccati equation [10]:The exact solution 

when  is . 

By applying the technique described in Sections 2 and 3, the initial value problem 

(23) is equivalent to the integral equation 

Let . In view of recurrence relation (8), we have the following first approximations:and 

so on. The 4-term approximate solution for (23) is 

In Figure 2, we have plotted the 4-term approximate solution for (23) for different 

values of  with the corresponding exact solution. It is remarkable to note that the 

approximate solution,  in case ,  and the exact solution are almost equal (continuous 

curve) whenever the approximate solution, in cases , is of high agreement with the 

exact solution (dashed and dotted curves, resp.). 

 
 

Figure 2  

Plots of the approximate solution for different values of  and the exact solution for 

(23). 
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Comparing the obtained results with those obtained by homotopy analysis method, 

in case , in [10], we can confirm the simplicity and accuracy of the given method. 

Example 5. Consider the following initial value problem with fractional order [23, 24]: 

The exact solution for this problem is . 

As in Example 4, the initial value problem (27) is equivalent to the integral equation 

Let . In view of recurrence relation (8), we have the following first approximations:and 

so on. The 4-term approximate solution and the corresponding exact solution for (27) 

are plotted in Figure 3. It is remarkable to note that the two solutions are almost 

equal. 

 

 

Figure 3  

Plots of the approximate solution and the exact solution for (27). 
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Comparing these obtained results with those obtained by new Jacobi operational 

matrix in [23, 24], we can confirm the simplicity and accuracy of the given method. 

Example 6. Consider the following fractional order wave equation in 2-

dimensional space [14]: 

 

The exact solution for this problem when  is 

The initial value problem (30) is equivalent to the integral equation 

Let .  In view of recurrence relation (17), we have the following first 

approximations:and so on. The n-term approximate solution for (30) isIn closed form 

this gives:which is the exact solution for the given problem. When , the above n-

term approximate solution for (30) becomesIn closed form, this giveswhich is the 

same result obtained by variational iteration method in [14]. 

 

Example 7. Consider the following fractional order heat equation in 2-

dimensional space [11]: 

 

The exact solution for this problem when  is 

The initial value problem (38) is equivalent to the integral equation 

Let . In view of recurrence relation (17), we have the following first 

approximations:and so on. The n-term approximate solution for (38) isWhen , The n-

term approximate solution for (38) becomesIn closed form, this giveswhich is the 

exact solution for the given problem. 

The obtained results in this example are the same as these obtained in [11] by the 

homotopy perturbation method, in case , but with the simplicity of the given method. 

Example 8. In this last example, we consider the following fractional order nonlinear 

wave equation [25]: 

The exact solution for this problem when  is  where ,  . 

The initial value problem (45) is equivalent to the integral equation 

Let . In view of recurrence relation (8), we haveand so on. The 3-term approximate 

solution and the corresponding exact solution for (45) are plotted in Figure 4(a), in 

case , for  ., in Figure 4(b), in case , for ., and in Figure 4(c), in case . It is remarkable 

to note that in the first two figures all the solutions are almost equal. 
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Figure 4  

(a) Plots of the approximate solution for different values of  and the exact solution, in 

case ; for (45). (b) Plots of the approximate solution for different values of  and the 

exact solution, in case ; for (45). (c) Plots of the approximate solution, in case  for 

(45). 

Comparing these results with those obtained by the modification homotopy 

perturbation method in [25], we can confirm the accuracy and simplicity of the given 

method. 

5. Conclusion 

In this paper, the new iterative method with suitable algorithm is successfully used to 

solve linear and nonlinear ordinary and partial differential equations with fractional 

order. It is clear that the computations are easy and the solutions agree well with the 

corresponding exact solutions and more accurate than the solutions obtained by 

other methods. Moreover, the accuracy is high with little computed terms of the 

solution which confirm that this method with the given algorithm is a powerful method 

for handling fractional differential equations. 

Regula-Falsi method 

The Regula–Falsi Method is a numerical method for estimating the roots of a 
polynomial f(x).   A value x replaces the midpoint in the Bisection Method and serves 
as the new approximation of a root of f(x).   The objective is to make convergence 
faster.   Assume that f(x) is continuous. 

Algorithm for the Regula–Falsi Method: Given a continuous function f(x) 

1. Find points a and b such that a < b and f(a) * f(b) < 0. 
 

2. Take the interval [a, b] and determine the next value of x1. 
 

3. If f(x1) = 0 then x1 is an exact root, else if f(x1) * f(b) < 0 then let a = x1, else 
if f(a) * f(x1) < 0 then let b = x1. 
 

4. Repeat steps 2 & 3 until f(xi) = 0 or |f(xi)| £ DOA, where DOA stands 
for degree of accuracy. 
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Observe that 

EC / BC = E / AB 

[ x – a ] / [ b – a ] = [ f(x) – f(a) ] / [ f(b) – f(a) ] 

x – a = [ b – a ] [ 0 – f(a) ] / [ f(b) – f(a) ] 

x = a + [ b – a ] [ – f(a) ] / [ f(b) – f(a) ] 

x = a – [ b – a ] f(a) / [ f(b) – f(a) ] 

Note that the line segment drawn from f(a) to f(b) is called the interpolation line. 

Graphically, if the root is in [ a, xi ], then the next interpolation line is drawn between ( 
a, f(a) ) and ( xi, f(xi) ); otherwise, if the root is in [ xi, b ], then the next interpolation 
line is drawn between ( xi, f(xi) ) and (b, f(b)). 

 

EXAMPLE:   Consider f(x) = x3 + 3x – 5, where [ a = 1, b = 2 ] and DOA = 0.001. 

i a x b f(a) f(x) 
f(b

) 



1 1 1.1 2 – 1 – 0.369 9 

2 1.1 
1.13544668587

896 
2 – 0.369 
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0.12979759213093

1 

9 

3 
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896 

1.14773797024

856 
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31 
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86 

9 

4 
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856 
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269 
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286 
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17 
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5 
1.15196570867
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1.15341577448 2 
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0.0018107788348

7646 
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0.00062023148574
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Newton Raphson method 
 

Given a function f(x) on floating number x and an initial guess for root, find root of 
function in interval. Here f(x) represents algebraic or transcendental equation. 

For simplicity, we have assumed that derivative of function is also provided as input. 

Example: 
 
Input: A function of x (for example x3 – x2 + 2), 
       derivative function of x (3x2 – 2x for above example) 
       and an initial guess x0 = -20 
Output: The value of root is : -1.00 
        OR any other value close to root. 
 
We have discussed below methods to find root in set 1 and set 2 
Set 1: The Bisection Method 
Set 2: The Method Of False Position 

https://www.geeksforgeeks.org/solution-of-algebraic-and-transcendental-equations-set-1-the-bisection-method/
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Comparison with above two methods: 
 

1. In previous methods, we were given an interval. Here we are required an initial 
guess value of root. 
 

2. The previous two methods are guaranteed to converge, Newton Rahhson may 
not converge in some cases. 
 

3. Newton Raphson method requires derivative. Some functions may be difficult to 
impossible to differentiate. 
 

4. For many problems, Newton Raphson method converges faster than the above 
two methods. 
 

5. Also, it can identify repeated roots, since it does not look for changes in the sign 
of f(x) explicitly 
 

The formula: 
 
Starting from initial guess x1, the Newton Raphson method uses below formula to find 
next value of x, i.e., xn+1 from previous value xn. 

 
 
Algorithm: 
 
Input: initial x, func(x), derivFunc(x) 
Output: Root of Func() 

1. Compute values of func(x) and derivFunc(x) for given initial x 
2. Compute h: h = func(x) / derivFunc(x) 
3. While h is greater than allowed error ε 

1. h = func(x) / derivFunc(x) 
2. x = x – h 

Below is the implementation of above algorithm. 

C++ 

filter_none 

edit 
play_arrow 
 
brightness_4 
// C++ program for implementation of Newton Raphson Method for  

// solving equations  

#include<bits/stdc++.h> 

https://media.geeksforgeeks.org/wp-content/cdn-uploads/newtonraphsonformula.png


#define EPSILON 0.001  

usingnamespacestd;  

   

// An example function whose solution is determined using  

// Bisection Method. The function is x^3 - x^2  + 2  

doublefunc(doublex)  

{  

    returnx*x*x - x*x + 2;  

}  

   

// Derivative of the above function which is 3*x^x - 2*x  

doublederivFunc(doublex)  

{  

    return3*x*x - 2*x;  

}  

   

// Function to find the root  

voidnewtonRaphson(doublex)  

{  

    doubleh = func(x) / derivFunc(x);  

    while(abs(h) >= EPSILON)  

    {  

        h = func(x)/derivFunc(x);  

    

        // x(i+1) = x(i) - f(x) / f'(x)    

        x = x - h;  

    }  

   

    cout << "The value of the root is : "<< x;  

}  



   

// Driver program to test above  

intmain()  

{  

    doublex0 = -20; // Initial values assumed  

    newtonRaphson(x0);  

    return0;  

}  

Java 

filter_none 

edit 
play_arrow 
brightness_4 
// Java program for implementation of   

// Newton Raphson Method for solving   

// equations  

classGFG {  

       

    staticfinaldoubleEPSILON = 0.001;  

       

    // An example function whose solution  

    // is determined using Bisection Method.  

    // The function is x^3 - x^2 + 2  

    staticdoublefunc(doublex)  

    {  

        returnx * x * x - x * x + 2;  

    }  

       

    // Derivative of the above function   

    // which is 3*x^x - 2*x  



    staticdoublederivFunc(doublex)  

    {  

        return3* x * x - 2* x;  

    }  

       

    // Function to find the root  

    staticvoidnewtonRaphson(doublex)  

    {  

        doubleh = func(x) / derivFunc(x);  

        while(Math.abs(h) >= EPSILON)  

        {  

            h = func(x) / derivFunc(x);  

       

            // x(i+1) = x(i) - f(x) / f'(x)   

            x = x - h;  

        }  

       

        System.out.print("The value of the" 

                + " root is : "  

                + Math.round(x * 100.0) / 100.0);  

    }  

       

    // Driver code  

    publicstaticvoidmain (String[] args)  

    {  

           

        // Initial values assumed  

        doublex0 = -20;   

        newtonRaphson(x0);  

    }  



}  

   

// This code is contributed by Anant Agarwal.  

Python3 

filter_none 

edit 
play_arrow 
brightness_4 
# Python3 code for implementation of Newton  

# Raphson Method for solving equations  

   

# An example function whose solution   

# is determined using Bisection Method.   

# The function is x^3 - x^2 + 2  

deffunc( x ):  

    returnx *x *x -x *x +2 

   

# Derivative of the above function   

# which is 3*x^x - 2*x  

defderivFunc( x ):  

    return3*x *x -2*x  

   

# Function to find the root  

defnewtonRaphson( x ):  

    h =func(x) /derivFunc(x)  

    whileabs(h) >=0.0001:  

        h =func(x)/derivFunc(x)  

           

        # x(i+1) = x(i) - f(x) / f'(x)  

        x =x -h  



       

    print("The value of the root is : ",  

                             "%.4f"%x)  

   

# Driver program to test above  

x0 =-20# Initial values assumed  

newtonRaphson(x0)  

   

# This code is contributed by "Sharad_Bhardwaj"  

C# 

filter_none 

edit 
play_arrow 
brightness_4 
// C# program for implementation of   

// Newton Raphson Method for solving   

// equations  

usingSystem;  

classGFG {  

       

    staticdoubleEPSILON = 0.001;  

       

    // An example function whose solution  

    // is determined using Bisection Method.  

    // The function is x^3 - x^2 + 2  

    staticdoublefunc(doublex)  

    {  

        returnx * x * x - x * x + 2;  

    }  

       



    // Derivative of the above function   

    // which is 3*x^x - 2*x  

    staticdoublederivFunc(doublex)  

    {  

        return3 * x * x - 2 * x;  

    }  

       

    // Function to find the root  

    staticvoidnewtonRaphson(doublex)  

    {  

        doubleh = func(x) / derivFunc(x);  

        while(Math.Abs(h) >= EPSILON)  

        {  

            h = func(x) / derivFunc(x);  

       

            // x(i+1) = x(i) - f(x) / f'(x)   

            x = x - h;  

        }  

       

        Console.Write("The value of the" 

                    + " root is : " 

                    + Math.Round(x * 100.0) / 100.0);  

    }  

       

    // Driver code  

    publicstaticvoidMain ()  

    {  

           

        // Initial values assumed  

        doublex0 = -20;   



        newtonRaphson(x0);  

    }  

}  

   

// This code is contributed by nitin mittal  

PHP 

filter_none 

edit 
play_arrow 
brightness_4 
<?php  

// PHP program for implementation   

// of Newton Raphson Method for   

// solving equations  

$EPSILON= 0.001;  

   

// An example function whose   

// solution is determined   

// using Bisection Method.   

// The function is x^3 - x^2 + 2  

functionfunc($x)  

{  

    return$x* $x* $x-   

           $x* $x+ 2;  

}  

   

// Derivative of the above  

// function which is 3*x^x - 2*x  

functionderivFunc($x)  

{  



    return3 * $x*  

               $x- 2 * $x;  

}  

   

// Function to   

// find the root  

functionnewtonRaphson($x)  

{  

    global$EPSILON;  

    $h= func($x) / derivFunc($x);  

    while(abs($h) >= $EPSILON)  

    {  

        $h= func($x) / derivFunc($x);  

   

        // x(i+1) = x(i) -   

        // f(x) / f'(x)   

        $x= $x- $h;  

    }  

   

    echo"The value of the ".   

           "root is : ", $x;  

}  

   

// Driver Code  

$x0= -20; // Initial values assumed  

newtonRaphson($x0);  

   

// This code is contributed by ajit  

?> 

 

Output: 



The value of root is : -1.00  

How does this work? 
The idea is to draw a line tangent to f(x) at point x1. The point where the tangent line 
crosses the x axis should be a better estimate of the root than x1. Call this point x2. 

Calculate f(x2), and draw a line tangent at x2. 

 
We know that slope of line from (x1, f(x1)) to (x2, 0) is f'(x1)) where f‘ represents 
derivative of f. 
 
 

f'(x1) = (0 - f(x1)) / (x2 - x1)  
 
f'(x1) *  (x2 - x1) =  - f(x1) 
 
x2 =  x1 - f(x1) / f'(x1)  
 
By finding this point 'x2', we move closer towards the root. 
We have to keep on repeating the above step till we get really close to  
the root or we find it. 
 
In general,  
xn+1 =  xn - f(xn) / f'(xn)  
 
Alternate Explanation using Taylor‘s Series: 
 
Let x1 be the initial guess.  
 
We can write x2 as below: 
  xn+1  = xn + h ------- (1) 
Here h would be a small value that can be positive or negative. 
 
According to Taylor's Series,  
ƒ(x) that is infinitely differentiable can be written as below 
f(xn+1) = f(xn  + h)  
       = f(xn) + h*f'(xn) + ((h*h)/2!)*(f''(xn)) + ... 
 

https://en.wikipedia.org/wiki/Taylor_series
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Since we are looking for root of function, f(xn+1) = 0 
 
f(xn) + h*f'(xn) + ((h*h)/2!)*(f''(xn)) + ... = 0 
 
Now since h is small, h*h would be very small.  
So if we ignore higher order terms, we get 
 
f(xn) + h*f'(xn) = 0 
 
Substituting this value of h = xn+1 - xn from equation (1) we get,  
f(xn) + (xn+1  - xn)*f'(xn) = 0 
 
xn+1 =  xn - f(xn) / f'(xn)   
 
Notes: 

1. We generally used this method to improve the result obtained by either 
bisection method or method of false position. 
 

2. Babylonian method for square root is derived from the Newton-Raphson 
method. 

Secant method 

 

The first two iterations of the secant method. The red curve shows the function f, and 

the blue lines are the secants. For this particular case, the secant method will not 

converge to the visible root. 

In numerical analysis, the secant method is a root-finding algorithm that uses a 
succession of roots of secant lines to better approximate a root of a function f. The 
secant method can be thought of as a finite-difference approximation of Newton's 
method. However, the secant method predates Newton's method by over 3000 
years.[1] 

https://www.geeksforgeeks.org/square-root-of-a-perfect-square/
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Root-finding_algorithm
https://en.wikipedia.org/wiki/Root_of_a_function
https://en.wikipedia.org/wiki/Secant_line
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Finite-difference
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Secant_method#cite_note-1
https://en.wikipedia.org/wiki/File:Secant_method.svg


The method[edit] 

 

The secant method is defined by the recurrence relation 

As can be seen from the recurrence relation, the secant method requires two initial 

values, x0 and x1, which should ideally be chosen to lie close to the root. 

Derivation of the method[edit] 

Starting with initial values x0 and x1, we construct a line through the 
points (x0, f(x0)) and (x1, f(x1)), as shown in the picture above. In slope–intercept 
form, the equation of this line is 

 

The root of this linear function, that is the value of x such that y = 0 is 

 

We then use this new value of x as x2 and repeat the process, 
using x1 and x2 instead of x0 and x1. We continue this process, solving for x3, x4, etc., 
until we reach a sufficiently high level of precision (a sufficiently small difference 
between xn and xn−1): 

 

Convergence[edit] 

The iterates {\displaystyle x_{n}} of the secant method converge to a root 

of {\displaystyle f} if the initial values {\displaystyle x_{0}} and {\displaystyle x_{1}} are 

sufficiently close to the root. The order of convergence is υ, where 

{\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}\approx 1.618}is the golden ratio. In 

particular, the convergence is superlinear, but not quite quadratic. 

This result only holds under some technical conditions, namely that {\displaystyle 

f} be twice continuously differentiable and the root in question be simple (i.e., with 

multiplicity 1). 

If the initial values are not close enough to the root, then there is no guarantee that 

the secant method converges. There is no general definition of "close enough", but 

the criterion has to do with how "wiggly" the function is on the interval {\displaystyle 

[x_{0},x_{1}]}. For example, if {\displaystyle f} is differentiable on that interval and 

there is a point where {\displaystyle f'=0} on the interval, then the algorithm may not 

converge. 

Comparison with other root-finding methods[edit] 

The secant method does not require that the root remain bracketed, like 
the bisection method does, and hence it does not always converge. The false 
position method (or regula falsi) uses the same formula as the secant method. 

However, it does not apply the formula on  and , like the secant method, but on 
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 and on the last iterate  such that  and  have a different sign. This means that 
the false position method always converges. 

The recurrence formula of the secant method can be derived from the formula 
for Newton's method 

 

by using the finite-difference approximation 

 

The secant method can be interpreted as a method in which the derivative is 
replaced by an approximation and is thus a quasi-Newton method. 

If we compare Newton's method with the secant method, we see that Newton's 
method converges faster (order 2 against υ ≈ 1.6). However, Newton's method 
requires the evaluation of both  and its derivative  at every step, while the secant 
method only requires the evaluation of . Therefore, the secant method may 

occasionally be faster in practice. For instance, if we assume that evaluating 
 takes as much time as evaluating its derivative and we neglect all other costs, we 
can do two steps of the secant method (decreasing the logarithm of the error by a 
factor υ2 ≈ 2.6) for the same cost as one step of Newton's method (decreasing the 
logarithm of the error by a factor 2), so the secant method is faster. If, however, we 
consider parallel processing for the evaluation of the derivative, Newton's method 
proves its worth, being faster in time, though still spending more steps. 

Generalizations[edit] 

Broyden's method is a generalization of the secant method to more than one 
dimension. 

The following graph shows the function f in red and the last secant line in bold blue. 
In the graph, the x intercept of the secant line seems to be a good approximation of 
the root of f. 
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Computational example[edit] 

Below, the secant method is implemented in the Python programming language. 

It is then applied to find a root of the function f(x) = x2 − 612 with initial points 

 and  

defsecant_method(f,x0,x1,iterations): 

"""Return the root calculated using the secant method.""" 

foriinrange(iterations): 

x2=x1-f(x1)*(x1-x0)/float(f(x1)-f(x0)) 

x0,x1=x1,x2 

returnx2 

 

deff_example(x): 

returnx**2-612 
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root=secant_method(f_example,10,30,5) 

 

print("Root: {}".format(root))# Root: 24.738633748750722 

 

Rate of convergence of iterative methods. 

The term ―iterative method‖ refers to a wide range of techniques that use successive 
approximations to obtain more accurate solutions to a linear system at each step… 
In numerical analysis it attempts to solve a problem by finding 
successive approximations to the solution starting from an initial guess. This 
approach is in contrast to direct methods which attempt to solve the problem by a 
finite sequence of operations, and, in the absence of rounding errors, would deliver 
an exact solution Iterative methods are usually the only choice for non linear 
equations. However, iterative methods are often useful even for linear problems 
involving a large number of variables (sometimes of the order of millions), where 
direct methods would be prohibitively expensive (and in some cases impossible) 
even with the best available computing power. 
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Stationary methods are older, simpler to understand and implement, but usually not 
as effective Stationary iterative method are the iterative methods that performs in 
each iteration the same operations on the current iteration vectors.Stationary 
iterative methods solve a linear system with an operator approximating the original 
one; and based on a measurement of the error in the result, form a ―correction 
equation‖ for which this process is repeated. While these methods are simple to 
derive, implement, and analyze, convergence is only guaranteed for a limited class 
of matrices. Examples of stationary iterative methods are the Jacobi method,gauss 
seidel method and the successive overrelaxation method. 

The Nonstationary methods are based on the idea of sequences of orthogonal 
vectors Nonstationary methods are a relatively recent development; their analysis is 
usually harder to understand, but they can be highly effective These are the Iterative 
method that has iteration-dependent coefficients.It include Dense matrix: Matrix for 
which the number of zero elements is too small to warrant specialized algorithms. 
Sparse matrix: Matrix for which the number of zero elements is large enough that 
algorithms avoiding operations on zero elements pay off. Matrices derived from 
partial differential equations typically have a number of nonzero elements that is 
proportional to the matrix size, while the total number of matrix elements is the 
square of the matrix size. 

The rate at which an iterative method converges depends greatly on the spectrum of 
the coefficient matrix. Hence, iterative methods usually involve a second matrix that 
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transforms the coefficient matrix into one with a more favorable spectrum. The 
transformation matrix is called a preconditioner. A good preconditioner improves the 
convergence of the iterative method, sufficiently to overcome the extra cost of 
constructing and applying the preconditioner. Indeed, without a preconditioner the 
iterative method may even fail to converge. 

Rate of Convergence 

 

In numerical analysis, the speed at which a convergent sequence approaches its 
limit is called the rate of convergence. Although strictly speaking, a limit does not 
give information about any finite first part of the sequence, this concept is of practical 
importance if we deal with a sequence of successive approximations for an iterative 
method as then typically fewer iterations are needed to yield a useful approximation 
if the rate of convergence is higher. This may even make the difference between 
needing ten or a million iterations.Similar concepts are used 
for discretization methods. The solution of the discretized problem converges to the 
solution of the continuous problem as the grid size goes to zero, and the speed of 
convergence is one of the factors of the efficiency of the method. However, the 
terminology in this case is different from the terminology for iterative methods. 

The rate of convergence of an iterative method is represented by mu (Î¼) and is 
defined as such:  

Suppose the sequence{xn} (generated by an iterative method to find an 
approximation to a fixed point) converges to a point x, then  

limn->[infinity] = |xn+1-x|/|xn-x|[alpha]=Î¼, where Î¼â‰≦0 and Î±(alpha)=order of 
convergence.  

In cases where Î±=2 or 3 the sequence is said to have quadratic and cubic 
convergence respectively. However in linear cases i.e. when Î±=1, for the sequence 
to converge Î¼ must be in the interval (0,1). The theory behind this is that for 
En+1â‰¤Î¼En to converge the absolute errors must decrease with each 
approximation, and to guarantee this, we have to set 0<Î¼<1.  

In cases where Î±=1 and Î¼=1 and you know it converges (since Î¼=1 does not tell 
us if it converges or diverges) the sequence {xn} is said to converge sublinearly i.e. 
the order of convergence is less than one. If Î¼>1 then the sequence diverges. 
If Î¼=0 then it is said to converge superlinearly i.e. it‘s order of convergence is higher 
than 1, in these cases you change Î± to a higher value to find what the order of 
convergence is. In cases where Î¼ is negative, the iteration diverges. 

Stationary iterative methods 

 

Stationary iterative methods are methods for solving a linear system of equations. 
Ax=B. where  is a given matrix and  is a given vector. Stationary iterative methods 
can be expressed in the simple form 



where neither  nor  depends upon the iteration count . The four main stationary 
methods are the Jacobi Method,Gauss seidel method, successive overrelaxation 
method (SOR), and  symmetric successive overrelaxation method (SSOR). 

1.Jacobi method:- The Jacobi method is based on solving for every variable locally 
with respect to the other variables; one iteration of the method corresponds to 
solving for every variable once. The resulting method is easy to understand and 
implement, but convergence is slow. The Jacobi method is a method of solving 
a matrix equation on a matrix that has no zeros along its main diagonal . Each 
diagonal element is solved for, and an approximate value plugged in. The process is 
then iterated until it converges. This algorithm is a stripped-down version of the 
Jacobi transformation method of matrix diagnalization. 

The Jacobi method is easily derived by examining each of the  equations in the 
linear system of equations  in isolation. If, in the th equation 

solve for the value of  while assuming the other entries of  remain fixed. This gives 

which is the Jacobi method. 

In this method, the order in which the equations are examined is irrelevant, since the 
Jacobi method treats them independently. The definition of the Jacobi method can 
be expressed with matrices as 

where the matrices , , and  represent the diagnol, strictly lower triangular, and strictly 
upper triangular parts of , respectively 

Convergence:- The standard convergence condition (for any iterative method) is 
when the spectral radius of the iteration matrix 

Ï•(D âˆ‘ 1R) < 1. 

D is diagonal component,R is the remainder. 

The method is guaranteed to converge if the matrix A is strictly or 
irreducibly diagonally dominant. Strict row diagonal dominance means that for each 
row, the absolute value of the diagonal term is greater than the sum of absolute 
values of other terms: 

The Jacobi method sometimes converges even if these conditions are not satisfied. 

2. Gauss-Seidel method:- The Gauss-Seidel method is like the Jacobi method, 
except that it uses updated values as soon as they are available. In general, if the 
Jacobi method converges, the Gauss-Seidel method will converge faster than the 
Jacobi method, though still relatively slowly. The Gauss-Seidel method is a 
technique for solving the  equations of the linear system of equations  one at a time 
in sequence, and uses previously computed results as soon as they are available, 

There are two important characteristics of the Gauss-Seidel method should be 
noted. Firstly, the computations appear to be serial. Since each component of the 



new iterate depends upon all previously computed components, the updates cannot 
be done simultaneously as in the Jacobi method. Secondly, the new iterate  depends 
upon the order in which the equations are examined. If this ordering is changed, 
the components of the new iterates (and not just their order) will also change. In 
terms of matrices, the definition of the Gauss-Seidel method can be expressed as 

where the matrices , , and  represent the diagonal, strictly lower triangular, and 
strictly upper triangular parts of  A, respectively. 

The Gauss-Seidel method is applicable to strictly diagonally dominant, or symmetric 
positive definite matrices  A. 

Convergence:- 

Given a square system of n linear equations with unknown x: 

The convergence properties of the Gauss-Seidel method are dependent on the 
matrix A. Namely, the procedure is known to converge if either: 

A is symmetric positive definite, or 

A is strictly or irreducibly diagonally dominant. 

The Gauss-Seidel method sometimes converges even if these conditions are not 
satisfied. 

3.Successive Overrelaxation method:- 

 

The successive overrelaxation method (SOR) is a method of solving a linear system 
of equations  derived by extrapolating the gauss-seidel method. This extrapolation 
takes the form of a weighted average between the previous iterate and the computed 
Gauss-Seidel iterate successively for each component, 

where  denotes a Gauss-Seidel iterate and  is the extrapolation factor. The idea is to 
choose a value for  that will accelerate the rate of convergence of the iterates to the 
solution. 

In matrix terms, the SOR algorithm can be written as 

where the matrices , , and  represent the diagonal, strictly lower-triangular, and 
strictly upper-triangular parts of , respectively. 

If , the SOR method simplifies to the gauss-seidel method. A theorem due to Kahan 
shows that SOR fails to converge if  is outside the interval . 

In general, it is not possible to compute in advance the value of  that will maximize 
the rate of convergence of SOR. Frequently, some heuristic estimate is used, such 
as  where  is the mesh spacing of the discretization of the underlying physical 
domain. 



Convergence:- 

Successive Overrelaxation method may converge faster than Gauss-Seidel by an 
order of magnitude. We seek the solution to set of linear equations  

  

In matrix terms, the successive over-relaxation (SOR) iteration can be expressed as 

where , , and  represent the diagonal, lower triangular, and upper triangular parts of 
the coefficient matrix ,  is the iteration count, and  is a relaxation factor. This matrix 
expression is not usually used to program the method, and an element-based 
expression is used 
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Note that for  that the iteration reduces to the gauss-seidel iteration. As with 
the Gauss seidel method, the computation may be done in place, and the iteration is 
continued until the changes made by an iteration are below some tolerance. 

The choice of relaxation factor is not necessarily easy, and depends upon the 
properties of the coefficient matrix. For symmetric, positive definite matrices it can be 
proven that  will lead to convergence, but we are generally interested in faster 
convergence rather than just convergence. 

4.Symmetric Successive overrelaxation:- Symmetric Successive Overrelaxation 
(SSOR) has no advantage over SOR as a stand-alone iterative method; however, it 
is useful as a preconditioner for nonstationary methods The symmetric successive 
overrelaxation (SSOR) method combines two successive overrelaxation 
method (SOR) sweeps together in such a way that the resulting iteration matrix is 
similar to a symmetric matrix it the case that the coefficient matrix  of the linear 
system  is symmetric. The SSOR is a forward SOR sweep followed by a backward 
SOR sweep in which the unknowns are updated in the reverse order. The similarity 
of the SSOR iteration matrix to a symmetric matrix permits the application of SSOR 
as a preconditioner for other iterative schemes for symmetric matrices. This is the 
primary motivation for SSOR, since the convergence rate is usually slower than the 
convergence rate for SOR with optimal .. 

Non-Stationary Iterative Methods:- 

1.Conjugate Gradient method:- The conjugate gradient method derives its name 
from the fact that it generates a sequence of conjugate (or orthogonal) vectors. 
These vectors are the residuals of the iterates. They are also the gradients of a 
quadratic functional, the minimization of which is equivalent to solving the linear 
system. CG is an extremely effective method when the coefficient matrix is 
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symmetric positive definite, since storage for only a limited number of vectors is 
required. Suppose we want to solve the following  system of linear equations 

Ax = b 

where the n-by-n matrix A is symmetric (i.e., AT = A), positive definite (i.e., xTAx > 0 
for all non-zero vectors x in Rn), and real. 

We denote the unique solution of this system by x*. 

We say that two non-zero vectors u and v are conjugate (with respect to A) if 

Since A is symmetric and positive definite, the left-hand side defines an inner 
product 

So, two vectors are conjugate if they are orthogonal with respect to this inner 
product. Being conjugate is a symmetric relation: if u is conjugate to v, then v is 
conjugate to u. 

Convergence:- Accurate predictions of the convergence of iterative methods are 
difficult to make, but useful bounds can often be obtained. For the Conjugate 
Gradient method, the error can be bounded in terms of the spectral condition 
number  of the matrix . ( if  and  are the largest and smallest eigenvalues of a 
symmetric positive definite matrix , then the spectral condition number of  is . If  is 
the exact solution of the linear system , with symmetric positive definite matrix , then 
for CG with symmetric positive definite preconditioner , it can be shown that 

  

where  , and  . From this relation we see that the number of iterations to reach a 
relative reduction of  in the error is proportional to . 

In some cases, practical application of the above error bound is straightforward. For 
example, elliptic second order partial differential equations typically give rise to 
coefficient matrices  with  (where  is the discretization mesh width), independent of 
the order of the finite elements or differences used, and of the number of space 
dimensions of the problem . Thus, without preconditioning, we expect a number of 
iterations proportional to  for the Conjugate Gradient method. 

Other results concerning the behavior of the Conjugate Gradient algorithm have 
been obtained. If the extremal eigenvalues of the matrix  are well separated, then 
one often observes so-called; that is, convergence at a rate that increases per 
iteration. This phenomenon is explained by the fact that CG tends to eliminate 
components of the error in the direction of eigenvectors associated with extremal 
eigenvalues first. After these have been eliminated, the method proceeds as if these 
eigenvalues did not exist in the given system, i.e., the convergence rate depends on 
a reduced system with a smaller condition number. The effectiveness of the 
preconditioner in reducing the condition number and in separating extremal 
eigenvalues can be deduced by studying the approximated eigenvalues of the 
related Lanczos process. 



2. Biconjugate Gradient Method-The Biconjugate Gradient method generates two 
CG-like sequences of vectors, one based on a system with the original coefficient 
matrix , and one on . Instead of orthogonalizing each sequence, they are made 
mutually orthogonal, or ―bi-orthogonal‖. This method, like CG, uses limited storage. It 
is useful when the matrix is nonsymmetric and nonsingular; however, convergence 
may be irregular, and there is a possibility that the method will break down. BiCG 
requires a multiplication with the coefficient matrix and with its transpose at each 
iteration. 

Convergence:- Few theoretical results are known about the convergence of BiCG. 
For symmetric positive definite systems the method delivers the same results as CG, 
but at twice the cost per iteration. For nonsymmetric matrices it has been shown that 
in phases of the process where there is significant reduction of the norm of the 
residual, the method is more or less comparable to full GMRES (in terms of numbers 
of iterations). In practice this is often confirmed, but it is also observed that the 
convergence behavior may be quite irregular , and the method may even break 
down . The breakdown situation due to the possible event that  can be circumvented 
by so-called look-ahead strategies. This leads to complicated codes. The other 
breakdown  situation, , occurs when the -decomposition fails, and can be repaired by 
using another decomposition. 

Sometimes, breakdown  or near-breakdown situations can be satisfactorily avoided 
by a restart  at the iteration step immediately before the breakdown step. Another 
possibility is to switch to a more robust method, like GMRES.   

3. Conjugate Gradient Squared (CGS ). 

 

The Conjugate Gradient Squared method is a variant of BiCG that applies the 
updating operations for the -sequence and the -sequences both to the same vectors. 
Ideally, this would double the convergence rate, but in practice convergence may be 
much more irregular than for BiCG, which may sometimes lead to unreliable results. 
A practical advantage is that the method does not need the multiplications with the 
transpose of the coefficient matrix. 

often one observes a speed of convergence for CGS that is about twice as fast as 
for BiCG, which is in agreement with the observation that the same ―contraction‖ 
operator is applied twice. However, there is no reason that the ―contraction‖ operator, 
even if it really reduces the initial residual , should also reduce the once reduced 
vector . This is evidenced by the often highly irregular convergence behavior of 
CGS . One should be aware of the fact that local corrections to the current solution 
may be so large that cancelation effects occur. This may lead to a less accurate 
solution than suggested by the updated residual. The method tends to diverge if the 
starting guess is close to the solution.   

4 Biconjugate Gradient Stabilized (Bi-CGSTAB ). 

 

The Biconjugate Gradient Stabilized method is a variant of BiCG, like CGS, but using 
different updates for the -sequence in order to obtain smoother convergence than 
CGS. Bi-CGSTAB often converges about as fast as CGS, sometimes faster and 
sometimes not. CGS can be viewed as a method in which the BiCG ―contraction‖ 



operator is applied twice. Bi-CGSTAB can be interpreted as the product of BiCG and 
repeatedly applied GMRES. At least locally, a residual vector is minimized , which 
leads to a considerably smoother  convergence behavior. On the other hand, if the 
local GMRES step stagnates, then the Krylov subspace is not expanded, and Bi-
CGSTAB will break down . This is a breakdown situation that can occur in addition to 
the other breakdown possibilities in the underlying BiCG algorithm. This type of 
breakdown may be avoided by combining BiCG with other methods, i.e., by selecting 
other values for   One such alternative is Bi-CGSTAB2 ; more general approaches 
are suggested by Sleijpen and Fokkema. 

5..Chebyshev  Iteration. 

 

The Chebyshev Iteration recursively determines polynomials with coefficients chosen 
to minimize the norm of the residual in a min-max sense. The coefficient matrix must 
be positive definite and knowledge of the extremal eigenvalues is required. This 
method has the advantage of requiring no inner products. Chebyshev Iteration is 
another method for solving nonsymmetric problems . Chebyshev Iteration avoids the 
computation of inner products  as is necessary for the other nonstationary methods. 
For some distributed memory architectures these inner products are a 
bottleneck  with respect to efficiency. The price one pays for avoiding inner products 
is that the method requires enough knowledge about the spectrum of the coefficient 
matrix  that an ellipse enveloping the spectrum can be identified ; however this 
difficulty can be overcome via an adaptive construction developed by Manteuffel , 
and implemented by Ashby . Chebyshev iteration is suitable for any nonsymmetric 
linear system for which the enveloping ellipse does not include the origin. 

Convergence:- 

In the symmetric case (where  and the preconditioner  are both symmetric) for the 
Chebyshev Iteration we have the same upper bound as for the Conjugate Gradient 
method, provided  and  are computed from  and  (the extremal eigenvalues of the 
preconditioned matrix ). 

There is a severe penalty for overestimating or underestimating the field of values. 
For example, if in the symmetric case  is underestimated, then the method may 
diverge; if it is overestimated then the result may be very slow convergence. Similar 
statements can be made for the nonsymmetric case. This implies that one needs 
fairly accurate bounds on the spectrum of  for the method to be effective (in 
comparison with CG or GMRES).   

Acceleration of convergence 

Many methods exist to increase the rate of convergence of a given sequence, i.e. to 
transform a given sequence into one converging faster to the same limit. Such 
techniques are in general known as ―series acceleration‖. The goal of the 
transformed sequence is to be much less ―expensive‖ to calculate than the original 
sequence. One example of series acceleration is Aitken‘s delta -squared process. 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



Unit-III 
 
 
 
Simultaneous Linear Equations 

Solutions of system of Linear equations 

 A Linear Equation is an equation for a line. 

A linear equation is not always in the form y = 3.5 − 0.5x, 

It can also be like y = 0.5(7 − x) 

Or like y + 0.5x = 3.5 

Or like y + 0.5x − 3.5 = 0 and more. 

(Note: those are all the same linear equation!) 

  

A System of Linear Equations is when we have two or more linear 
equations working together. 

Example: Here are two linear equations: 

2x + y = 5 

−x + y = 2 

Together they are a system of linear equations. 

Can you discover the values of x and y yourself? (Just have a go, play with them a 
bit.) 

Let's try to build and solve a real world example: 

Example: You versus Horse 

 

https://www.mathsisfun.com/algebra/linear-equations.html


It's a race! 

You can run 0.2 km every minute. 

The Horse can run 0.5 km every minute. But it takes 6 minutes to saddle the horse. 

How far can you get before the horse catches you? 

  

We can make two equations (d=distance in km, t=time in minutes) 

 You run at 0.2km every minute, so d = 0.2t 
 The horse runs at 0.5 km per minute, but we take 6 off its time: d = 0.5(t−6) 

  

So we have a system of equations (that are linear): 

 d = 0.2t 
 d = 0.5(t−6) 

We can solve it on a graph: 

Do you see how the horse starts at 6 minutes, but then runs faster? 

It seems you get caught after 10 minutes ... you only got 2 km away. 

Run faster next time. 

So now you know what a System of Linear Equations is. 

Let us continue to find out more about them .... 

Solving 

There can be many ways to solve linear equations! 

Let us see another example: 

Example: Solve these two equations: 

 

 x + y = 6 
 −3x + y = 2 

The two equations are shown on this graph: 

Our task is to find where the two lines cross. 



Well, we can see where they cross, so it is already solved graphically. 

But now let's solve it using Algebra! 

  

Hmmm ... how to solve this? There can be many ways! In this case both equations 
have "y" so let's try subtracting the whole second equation from the first: 

x + y − (−3x + y) = 6 − 2 

Now let us simplify it: 

x + y + 3x − y = 6 − 2 

4x = 4 

x = 1 

So now we know the lines cross at x=1. 

And we can find the matching value of y using either of the two original equations 
(because we know they have the same value at x=1). Let's use the first one (you can 
try the second one yourself): 

x + y = 6 

1 + y = 6 

y = 5 

And the solution is: 

x = 1 and y = 5 

And the graph shows us we are right! 

Linear Equations 

Only simple variables are allowed in linear equations. No x2, y3, √x, etc: 

 
Linear vs non-linear 



Dimensions 

A Linear Equation can be in 2 dimensions ... 

(such as x and y) 
  

 

... or in 3 dimensions ... 

(it makes a plane) 
  

 

... or 4 dimensions ...     

... or more!     

Common Variables 

For the equations to "work together" they share one or more variables: 

A System of Equations has two or more equations in one or more variables 

Many Variables 

So a System of Equations could have many equations and many variables. 

Example: 3 equations in 3 variables 

2x + y − 2z = 3 

x − y − z = 0 

x + y + 3z = 12 

There can be any combination: 

 2 equations in 3 variables, 
 

 6 equations in 4 variables, 
 

 9,000 equations in 567 variables, 
 

 etc. 



Solutions 

When the number of equations is the same as the number of variables there 
is likely to be a solution. Not guaranteed, but likely. 

In fact there are only three possible cases: 

 No solution 
 

 One solution 
 

 Infinitely many solutions 

When there is no solution the equations are called "inconsistent". 

One or infinitely many solutions are called "consistent" 

Here is a diagram for 2 equations in 2 variables: 

Independent 

"Independent" means that each equation gives new information. 
Otherwise they are "Dependent". 

Also called "Linear Independence" and "Linear Dependence" 

Example: 

 x + y = 3 
 2x + 2y = 6 

Those equations are "Dependent", because they are really the same equation, just 
multiplied by 2. 

So the second equation gave no new information. 

Where the Equations are True 

The trick is to find where all equations are true at the same time. 

True? What does that mean? 

Example: You versus Horse 

The "you" line is true all along its length (but nowhere else). 

Anywhere on that line d is equal to 0.2t 

 at t=5 and d=1, the equation is true (Is d = 0.2t? Yes, as 1 = 0.2×5 is true) 



 at t=5 and d=3, the equation is not true (Is d = 0.2t? No, as 3 = 0.2×5 is not 
true) 

Likewise the "horse" line is also true all along its length (but nowhere else). 

But only at the point where they cross (at t=10, d=2) are they both true. 

So they have to be true simultaneously ... 

... that is why some people call them "Simultaneous Linear Equations" 

Solve Using Algebra 

It is common to use Algebra to solve them. 

Here is the "Horse" example solved using Algebra: 

Example: You versus Horse 

The system of equations is: 

 d = 0.2t 
 d = 0.5(t−6) 

In this case it seems easiest to set them equal to each other: 

d = 0.2t = 0.5(t−6) 

  

Start with:0.2t = 0.5(t − 6) 

Expand 0.5(t−6):0.2t = 0.5t − 3 

Subtract 0.5t from both sides:−0.3t = −3 

Divide both sides by −0.3:t = −3/−0.3 = 10 minutes 

Now we know when you get caught! 

Knowing t we can calculate d:d = 0.2t = 0.2×10 = 2 km 

  

And our solution is: 

t = 10 minutes and d = 2 km 

https://www.mathsisfun.com/algebra/index.html


Algebra vs Graphs 

Why use Algebra when graphs are so easy? Because: 

More than 2 variables can't be solved by a simple graph. 

So Algebra comes to the rescue with two popular methods: 

 Solving By Substitution 
 Solving By Elimination 

We will see each one, with examples in 2 variables, and in 3 variables. Here goes ... 
 
Solving By Substitution 

These are the steps: 

 Write one of the equations so it is in the style "variable = ..." 
 

 Replace (i.e. substitute) that variable in the other equation(s). 
 

 Solve the other equation(s) 
 

 (Repeat as necessary) 

Here is an example with 2 equations in 2 variables: 

Example: 

 3x + 2y = 19 
 x + y = 8 

We can start with any equation and any variable. 

Let's use the second equation and the variable "y" (it looks the simplest equation). 

  

Write one of the equations so it is in the style "variable = ...": 

We can subtract x from both sides of x + y = 8 to get y = 8 − x. Now our equations 
look like this: 

 3x + 2y = 19 
 y = 8 − x 

  

Now replace "y" with "8 − x" in the other equation: 



 3x + 2(8 − x) = 19 
 y = 8 − x 

  

Solve using the usual algebra methods: 

Expand 2(8−x): 

 3x + 16 − 2x = 19 
 y = 8 − x 

Then 3x−2x = x: 

 x + 16 = 19 
 y = 8 − x 

And lastly 19−16=3 

 x = 3 
 y = 8 − x 

  

Now we know what x is, we can put it in the y = 8 − x equation: 

 x = 3 
 y = 8 − 3 = 5 

And the answer is: 

x = 3 
y = 5 

  

Note: because there is a solution the equations are "consistent" 

 Check: why don't you check to see if x = 3 and y = 5 works in both equations? 

Solving By Substitution: 3 equations in 3 variables 

OK! Let's move to a longer example: 3 equations in 3 variables. 

This is not hard to do... it just takes a long time! 

Example: 

 x + z = 6 
 z − 3y = 7 



 2x + y + 3z = 15 

We should line up the variables neatly, or we may lose track of what we are doing: 

  

x     + z = 6       

  − 3y + z = 7       

2x + y + 3z = 15       

  

WeI can start with any equation and any variable. Let's use the first equation and the 
variable "x". 

Write one of the equations so it is in the style "variable = ...": 

x         = 6 − z     

  − 3y + z = 7       

2x + y + 3z = 15       

  

Now replace "x" with "6 − z" in the other equations: 

(Luckily there is only one other equation with x in it) 

  x         = 6 − z     

    − 3y + z = 7       

2(6−z) + y + 3z = 15       

  

Solve using the usual algebra methods: 

2(6−z) + y + 3z = 15 simplifies to y + z = 3: 

x         = 6 − z     

  − 3y + z = 7       



    y + z = 3       

Good. We have made some progress, but not there yet. 

Now repeat the process, but just for the last 2 equations. 

Write one of the equations so it is in the style "variable = ...": 

Let's choose the last equation and the variable z: 

x         = 6 − z     

  − 3y + z = 7       

        z = 3 − y     

  

Now replace "z" with "3 − y" in the other equation: 

x         = 6 − z     

  − 3y + 3 − y = 7       

        z = 3 − y     

  

Solve using the usual algebra methods: 

−3y + (3−y) = 7 simplifies to −4y = 4, or in other words y = −1 

x         = 6 − z     

    y     = −1       

        z = 3 − y     

Almost Done! 

  

Knowing that y = −1 we can calculate that z = 3−y = 4: 

x         = 6 − z     



    y     = −1       

        z = 4       

And knowing that z = 4 we can calculate that x = 6−z = 2: 

x         = 2       

    y     = −1       

        z = 4       

 

And the answer is: 

x = 2 
y = −1 
z = 4 

  

Check: please check this yourself. 

We can use this method for 4 or more equations and variables... just do the same 
steps again and again until it is solved. 

Conclusion: Substitution works nicely, but does take a long time to do. 

Solving By Elimination 

Elimination can be faster ... but needs to be kept neat. 

"Eliminate" means to remove: this method works by removing variables until there is 
just one left. 

The idea is that we can safely: 

 multiply an equation by a constant (except zero), 
 add (or subtract) an equation on to another equation 

Like in these examples: 

 



WHY can we add equations to each other? 

Imagine two really simple equations: 

x − 5 = 3 
5 = 5 

We can add the "5 = 5" to "x − 5 = 3": 

x − 5 + 5 = 3 + 5 
x = 8 

Try that yourself but use 5 = 3+2 as the 2nd equation 

It will still work just fine, because both sides are equal (that is what the = is for!) 

  

We can also swap equations around, so the 1st could become the 2nd, etc, if that 
helps. 

  

OK, time for a full example. Let's use the 2 equations in 2 variables example from 
before: 

Example: 

 3x + 2y = 19 
 x + y = 8 

Very important to keep things neat: 

3x + 2y = 19       

x + y = 8       

  

Now ... our aim is to eliminate a variable from an equation. 

First we see there is a "2y" and a "y", so let's work on that. 

Multiply the second equation by 2: 

3x + 2y = 19       

2x + 2y = 16       



Subtract the second equation from the first equation: 

x     = 3       

2x + 2y = 16       

Yay! Now we know what x is! 

  

Next we see the 2nd equation has "2x", so let's halve it, and then subtract "x": 

Multiply the second equation by ½ (i.e. divide by 2): 

x     = 3       

x + y = 8       

Subtract the first equation from the second equation: 

x     = 3       

    y = 5       

Done! 

And the answer is: 

x = 3 and y = 5 

  

And here is the graph: 

 



The blue line is where 3x + 2y = 19 is true 

The red line is where x + y = 8 is true 

At x=3, y=5 (where the lines cross) they are both true. That is the answer. 

Here is another example: 

Example: 

 2x − y = 4 
 6x − 3y = 3 

Lay it out neatly: 

2x − y = 4       

6x − 3y = 3       

Multiply the first equation by 3: 

6x − 3y = 12       

6x − 3y = 3       

Subtract the second equation from the first equation: 

0 − 0 = 9       

6x − 3y = 3       

0 − 0 = 9 ??? 

What is going on here? 

  

Quite simply, there is no solution. 

  

They are actually parallel lines:   
 

And lastly: 



Example: 

 2x − y = 4 
 6x − 3y = 12 

Neatly: 

2x − y = 4       

6x − 3y = 12       

Multiply the first equation by 3: 

6x − 3y = 12       

6x − 3y = 12       

Subtract the second equation from the first equation: 

0 − 0 = 0       

6x − 3y = 3       

0 − 0 = 0 

Well, that is actually TRUE! Zero does equal zero ... 

  

... that is because they are really the same equation ... 

  

... so there are an Infinite Number of Solutions 

They are the same line:   
 

And so now we have seen an example of each of the three possible cases: 

 No solution 
 One solution 
 Infinitely many solutions 



Solving By Elimination: 3 equations in 3 variables 

Before we start on the next example, let's look at an improved way to do things. 

Follow this method and we are less likely to make a mistake. 

First of all, eliminate the variables in order: 

 Eliminate xs first (from equation 2 and 3, in order) 
 then eliminate y (from equation 3) 

So this is how we eliminate them: 

 

We then have this "triangle shape": 

 

Now start at the bottom and work back up (called "Back-Substitution") 
(put in z to find y, then z and y to find x): 

 

And we are solved: 



 

ALSO, we will find it is easier to do some of the calculations in our head, or on 
scratch paper, rather than always working within the set of equations: 

Example: 

 x + y + z = 6 
 2y + 5z = −4 
 2x + 5y − z = 27 

Written neatly: 

x + y + z = 6       

    2y + 5z = −4       

2x + 5y − z = 27       

  

First, eliminate x from 2nd and 3rd equation. 

There is no x in the 2nd equation ... move on to the 3rd equation: 

Subtract 2 times the 1st equation from the 3rd equation (just do this in your head 
or on scratch paper): 

 



And we get: 

x + y + z = 6       

    2y + 5z = −4       

    3y − 3z = 15       

  

Next, eliminate y from 3rd equation. 

We could subtract 1½ times the 2nd equation from the 3rd equation (because 1½ 
times 2 is 3) ... 

... but we can avoid fractions if we: 

 multiply the 3rd equation by 2 and 
 multiply the 2nd equation by 3 

and then do the subtraction ... like this: 

 

And we end up with: 

x + y + z = 6       

    2y + 5z = −4       

        z = −2       

We now have that "triangle shape"! 

Now go back up again "back-substituting": 

We know z, so 2y+5z=−4 becomes 2y−10=−4, then 2y=6, so y=3: 

x + y + z = 6       



    y     = 3       

        z = −2       

Then x+y+z=6 becomes x+3−2=6, so x=6−3+2=5 

x         = 5       

    y     = 3       

        z = −2       

  

And the answer is: 

x = 5 
y = 3 

z = −2 

  

Check: please check for yourself. 

General Advice 

Once you get used to the Elimination Method it becomes easier than Substitution, 
because you just follow the steps and the answers appear. 

But sometimes Substitution can give a quicker result. 

 Substitution is often easier for small cases (like 2 equations, or sometimes 3 
equations) 
 

 Elimination is easier for larger cases 

And it always pays to look over the equations first, to see if there is an easy shortcut 
... so experience helps. 

Gaussian Elimination with Partial Pivoting 
  

Terry D. Johnson 
10.001 Fall 2000 

  
  



In the problem below, we have order of magnitude differences between coefficients 
in the different rows. 

  

 
  

Step 0a: Find the entry in the left column with the largest absolute value. This entry 
is called the pivot. 

Step 0b: Perform row interchange (if necessary), so that the pivot is in the first row. 
  

 
  

Step 1: Gaussian Elimination 
  



 
  

Step 2: Find new pivot 

Step 3: Switch rows (if necessary) 
  

 
  



Step 4: Gaussian Elimination 
  

 
  

Step 5: Find new pivot 

Step 6: Switch rows (if necessary) 
  

 
  

Step 7: Gaussian Elimination 
  



 
  

Step 8: Back Substitute 
  

-0.2x4 = -0.05;    x4 = 4 

100x3 + 200x4 = 800;   x3 = 0 

x2 + 2x3 + x4 =4;   x2 = 0 

x1 + 2x2 + x3 = 1;   x1 = 1 
  

Pivoting helps reduce rounding errors; you are less likely to add/subtract with very 
small number (or very large) numbers. 

Direct Methods 

 Direct methods : These are the methods which can find the solution of the 
system in a finite  

 

number of steps known apriori. Some of the important direct methods are  

1. Elimination methods 



2. Decomposition methods 

Gauss Elimination Method :  

There are  two basic steps in this elimination method. They are  

  

 Forward elimination  
 

 Back substitution.  

In forward elimination the augmented matrix (the elements of the vector b has joined 

with the coefficient matrix A  as (n+1)th column) and is denoted by A|b is converted 

into upper diagonal form by making  use of matrix row transformations (one can also 

convert into a lower triangular form in which case the process is called backward 

elimination).  

Then by starting with the last row of the upper triangular matrix (first row for lower 

triangular matrix) the unknown quatity is obtained by back (forward) substitution.  

For example consider the following n algebraic linear equations in n unknowns x 1, 

x 2 , . . ., xn as  

a11 x1 + a 12x2 + . . . + a 1nx n = b1 

a21x 1 + a 22 x2 + . . . + a 2n xn = b 2 

. . . 

ai1x 1 + a i2 x2 + . . . + a in xn = bi 

. . . 

an1x 1 + a n2 x2 + . . . + a nn xn = b n 

or in the matrix notation Ax = b 

 

where A =   

a11 x 1  a12 x 2  . . .  a 1nxn 

  

a21x1   a22x 2   . . .  a2nx n 

. . . 

. . . 

. . . 

an1x1   an2x 2   . . .  annx n 

x = (x1 , x2, . . ., x n )
 T and b = (b1 , b2, . . ., bn )

T 

Forward elimination procedure  :  

Use the row transformation  

R2 ® R2 - R 1*a21/a11means the elements of the second row are replaced by the 
second row elements subtracted with the first row elements  multiplied with the 



coefficient of the first element of the second row and divided with the diagonal 
elements of the first row.  

This will make the elements in the second row first column as zero. Similarly the 
remaining (n-2 ) rows are also replaced with corresponding row transformations so 
that the elements below the diagonal element in the first column become zero.  

Now the elements of the second now can be used to make the elements below the 
diagonal element of the second column, zero. Here the elements of the first row 
cann't be used since that will change the zeros in the first column to non zero again.  

By applying similar procedure for the remaining columns of the augmented 
matrix A|b(except the last column), the coefficent matrix part of the augmented 
matrix A|b will become upper diagonal. (A similar procedure can be applied from the 
last row to make the coefficient matrix A as lower diagonal). Now the last row of the 
augmented matrix has only two non-zero terms (the coefficient of x n and bn). This 
can be used to find xn. Once xn is known, the value of xn is substituted in (n-1)th row 
and obtain the xn-1. As we continue this process until first row gives unknown 
quatities x1, x 2, . . ., x n.  

Example : Consider the simple example :  

x1 + x2 + x3 = 6 

2x1 + 3x2 + 4x3 = 20 

3x1 + 4x2 + 2x3 = 17 

 

 

here A =   

1 1 1 

 ,  
 

b =   

6 

20 

17 

  2 3 4 
 

3 4 2 
 

and the unknown vector X = (x1 , x 2, x 3)
T 

 

Augmented matrix is A|b =   

1 1  1 6 

  2 3 4 20 

3 4 2 17 

Forward elimination :  

R2 ® R2 - 2/1 R 1 
R3 ® R3 - 3/1 R 1 

 



A|b =   

1 1  1 6 

  0 1 2 8 

0 1 -1 -1 

R3 ® R3 -1/1 R 2 

  

 

A|b =   

1 1  1 6 

  0 1 2 8 

0 0 -3 -9 

Back Substitution : 

From the last row 

-3x3 = -9 Þ x3 = 3 

From the second row x2 + 2x3 = 8 
x2 = 8 - 2x3 = 2 

Now from the first row x 1+ x2 + x 3 = 6 

x1 = 6 - 2 - 3 =1 Þ x = (1, 2, 3) TThe same procedure can be extended to the system 
of any order n provided the system has an unique solution.  

Pivoting : The main draw back of the above elimination process is division by the 
diagonal term while converting the augmented matrix into upper triangular form. If 
the diagonal element is zero or a vanishingly very small then the elements of the 
rows below this diagonal become very large in magnitude and difficult to handle 
because of the finite storage capacity of the computers. Alternative is to convert the 
system such that the element which has large magnitude in that column comes at 
the pivotal position i.e., the diagonal position.  

Partial Pivoting : If only row interchanging is used to bring the element of large 
magnitude of the pivotal column to the pivotal position at each step of diagonalization 
then such a process is called partial pivoting. In this process the matrix may have 
larger element in non-pivotal column(the column where the pivot is there) but the 
largest element in the pivotal column only brought to pivotal (or diagonal) position in 
this process by making use of row transformations.  

Complete Pivoting : In this process the largest element(in magnitude) of the whole 
coefficient matrix A is first brought at 1x 1 position of the coefficeint matrix and then 
leaving the first row and first column, the largest among the remaining elements is 
brought to the pivotal 2 x2 position and so on by using both row and column 
transformations, is called complete pivoting. During row transformations the last 
column of the augmented matrix also has to be considered but this column is not 
considered to find the largest element in magnitude. Since the column 
transformations are also allowed in this process, there will be a change in the 



position of the individual elements of the unknown vector X. Hence in the end the 
elements of the unknown vector X has to be rearranged by applying inverse column 
transformations in reverse order to all the column transformations preformed.  

Example : Consider x 1+ x2 + x3 = 6, 3x 1 + 3x 2 + 4x 3 = 20, 2x1+ x 2 + 3x3 = 13Partial 

pivoting : Since the largest element in the first column is at 3x1 which is not in the 

pivotal position, perform the row transformation  R1 « R 2. Now the system is  

3x1 + 3x2 + 4x 3 = 20 

x1+ x2 + x3 = 6 

2x1+ x2 + 3x3 = 13 

 

 

Augmented matrix 

is = 
  

3  3 4 20 

  1  1 1 6 

2  1 3 13 

R2 ® R2 - 1/3 R 1 

R3 ® R3 - 2/3 R 1 

 

A|b =    

3 3 4 20 

  0  0 -1/3 -2/3 

0 -1 1/3 -1/3 

Since this is a '0' at the pivotal position i.e., at second row second column 

apply R 2«R3 (interchange rows tow and three)  

  

 

A|b =    

3 3 4 20 

  0 -1 1/3 -1/3 

0 0 -1/3 -2/3 

Now the augmented matrix is in diagonal form(the part of coefficient matrix A).  

Back substitution : From the last row : -1/3x3 = -2/3 Þ x 3 = 2 
Now from the second row  
-x2 = -1/3 - 1/3x2 Þ x 2 =1 
and from the first row 3x1 = 20 - 3x1 - 4x(2) Þ x1 =3 
Hence the solution is X = (3 1 2)T 

 



Complete Pivoting : 

The given system is  

3x1+ 3x2 + 4x 3 = 20 
x1+ x2 + x3 = 6 
2x1+ x2 + 3x3 = 13 
 Since the largest element in magnitude is at first row third column perform the 
column transformation C1 « C3 (interchange first and third columns) then the 
augmented matrix is  

 

Augmented matrix 

is =  
  

4 3 3 20 

  1 1 1 6 

3 1 2 13 

(please note the order of the individual elements of the unknown vector x is 

now (x3 x2 x 1)
 T 

Perform R2 ® R2 - 1/4R 1 

R3 ® R3 - 3/4R 1 

  

 

A|b =    

4 3 3 20 

  0 1/4 1/4 -2 

0 -5/4 -1/4 3/5 

Now the elment with the largest magnitude is in the third row(leaving the first row 

aside)  

Perform R2« R3 

  

 

A|b =    

4 3 3 20 

  0 -5/4 -1/4 -2 

0 1/4 1/4 1 

R3 ® R3 - (-1/5) R 2 

  

 

A|b =    
4 3 3 20 

  
0 -5/4 -1/4 -2 



0 0 1/5 3/5 

From the last row 1/5x 1 = 3/5 Þ x1 =3 

From the second row -5/4x 2 = -2 +1/4 x 3 Þ x 2=1 

4x3 = 20-3x2-3x 1 = 20 -3 -9 = 8 Þ x 3 = 2 
  

COMPLEXITY OR OPERATIONAL COUNT 
  
  

First step (division by first pivot) : n 

second step (division by second pivot) : n-1 

. 

. 

. 

: 

: 

: 

. 

. 

. 

nth step(division by nth pivot) : 1 

Total number of divisions = Sn = n(n+1) / 2 

no. of multiplications: 
  

First step :  second equ : n 

 
third equ : n 

 

. 

. 

. 

: 

: 

: 

. 

. 

. 

 
nth equ : n 

 
Total : n(n-1) 

Similarly for second, third and so on 
ÞTotal no of multiplications in Forward elimination = Sn(n-1) = S(n2 - n) = (n/3) 
(n+1)(n-1) 

No. of multiplications in back substitutions 
  

(n-1)th equation : 1 

(n-2)th equation : 2 



 

. 

. 

: 

: 

: 

. 

. 

. 

first equation : n-1 

ÞTotal no of multiplications in back substitution = S(n-1) = (n/2)(n-1) 

Total multiplications = (n/3)(n+1)(n-1) + (n/2)(n-1) = (n/6) (n-1)(2n+5) 

Operational count = Total no of divisions and multiplications 

= (n/2)(n+1) + (n/6)(n-1)(2n+5) = (n/3)(n2 +3n -1) 

for very large 'n' the operational count is @ n3/3 or the complexity of the Gauss 
elimination is O(n3/3) 

No. of additions and subtractions = (n/6)(n-1)(2n+5). 

Similarly operational count for cholesky method is (1/6)(n3+9n2+2n). 
  
  

Ill Conditioned Systems : 

During computation it is not possible to store the numbers exactly in the computer 
but prone to some round off errors. If dA is the error in A and db is the error in b then 

the equation Ax = b is actually solved for (A + dA) = b + db. 
(or) 

||  - x|| < ||(A + dA)-1 - A-1|| ||b|| + ||(A + dA)-1|| ||db|| 

where ||.|| is any matrix norm 

This gives 

||  - x|| < (||A-1dA|| ||db||) (||A-1|| / (1 - ||A-1dA||)) 

||  - x|| < [ ||db|| / ||b||   +  ||dA|| / ||dA|| ] ( k(A) / (1 - ||A-1dA||))) 

where k(A) = ||A-1|| ||A-1|| is called the condition number of the matrix A. If k(A) is 
small (close to one) small change in A and b leads to small changes in x where as 
for large values of k(A)  a small change in A or b (or both) leads to large changes 
in x. The systems for which k(A) is large are called ill conditioned systems. 

Example : consider 2.1x +1.8y = 2.1 and 6.2x + 5.3y = 6.2 

eigen value of A are 74.18 and l2 = 0.000012 
if we use || ||2 for the norm then k(A) = Ö(l1/l2) = 2472.73 
That is the given system is ill-conditioned. 



 

Ill Conditioned system of equations 

In this segment we'll talk about how to differentiate between ill-conditioned and well-

conditioned systems of equations. So let‘s suppose somebody gives you a system of 

equations which is in the matrix form and turns out to be ax equals c. What A is the 

coefficient matrix and c is the right hand side vector and of course x is our solution 

vector or what we call as the unknown vector. So whenever we are solving or setting 

up simultaneous linear equations we write them in the form of a times x equals c 

where a is the coefficient matrix x is the solution vector and c is the right hand side 

vector. What you would like to see is that if you wanted to find  whether this 

particular system of equations is well-conditioned or ill-conditioned is to say the 

following: that hey if I make a small change in the elements of the  a matrix then how 

much change is it making in the solution vector? Or if I make a small change in my c 

vector, then how much change does it make in my solution vector? Because you 

would like that A if I make a small change in the coefficient matrix, you would like the 

solution vector to change in a small amount or if you change the right  hand side 

vector you would like the solution vector to change in a small amount. 

  

Because we are going to as we go through the process of setting up simultaneous 

linear equations  for real life problems those might be set up through a program 

where we‘re going to have round-off errors in the calculation of the a matrix and the 

calculation of the c matrix I suppose. We don‘t want such a round off errors or the 

lack of our use of precision when we use only single precision rather than double 

precision or quad precision to affect adversely what the solution vector is. If it does 

we want to have a mechanism of knowing whether it is doing so. 

  

So, let's look at some examples right here to see that if from a simple example if a 

system of equations is well-conditioned and ill-conditioned. Let‘s suppose somebody 

says is this particular system of equations 1 2 2 3.99 xy is equal to 4 7.999 well-

conditioned or ill-conditioned. We want to be able to make the difference between 

saying that hey if someone gave me a system of equations like this one is it well-

conditioned or ill-conditioned. I can see that if I wanted to solve the set of equations it 

does have a simple solution for example. What is the solution to this one? It's two 

comma one. So x y is two comma one. So if we take x equal two and y equal one. In 

fact, if you plug x equal to two and y equal to one in here you will get 4 and 7.999. So 

that's itself a solution for that. And we want to see that whether if a small change in 

the caution matrix is it going to result in a very different value x and y I'm going to 

get.  Or if I make a small change in my right hand side vector is it going to make a 

make change in my x and y. And what I'm doing now here islet‘s suppose I make a 

small change in my caution matrix. So What I'm doing is as follows. I'm taking 1.001 



so I'm making a small change in the caution matrix. Changing by the thousands I get 

3.998 so what I'm doing is that I‘m making a change of about a magnitude of point 

zero zero one for all of these elements which are here in the caution matrix. And I'm 

not changing the right hand side. 

  

And I want to see that if hey does it make a big difference in my solution? And what I 

find out is that hey that if I solve  these two equations,  two unknowns by hand or by 

using Matlab or a  new kind of calculator the answer that I should get is as follows 

3.994 0.001388. And you can see that just by watching it or just by looking at it you 

can see that this value of 2 has changed to almost 4. This value of 1 has 

to changed to almost a value of 001. So very different with very small change being 

made in the caution of the a matrix. So we can very well see that it is not a well-

conditioned system of equations. In order to complete the argument lets go and 

change the right hand side a little bit. So let‘s suppose I have 1 2 2 3.999 here. And 

what I do is I keep the caution matrix the same but I change the right hand side a 

little bit. So let me make this to be again one thousandths off of a difference there 

and 7.9998 here and one thousandths of a difference right here. And let‘s go and 

see what I get for values of x and y. So I get x and y here and if I calculate the value 

I get minus 3.999 and 4.00. So again you're finding out that from the original set of 

equations you had right here where the solution was 2 and 1 I made a very small 

change. I changed 4 to 4.001.  I changed 7.999 to 7.998. Small change, small 

relative change in the right hand side vector. But when I saw these two questions 

these two unknowns by calculator, Matlab, whatever we find out that the solution 

which I get is different. This was 2 now it is minus 3.999. This was 1 and now it‘s 4. 

So if somebody had to ask me just by intuition if this is a well-conditioned system of 

equations or an ill-conditioned system of equations I would tell them this to be an ill-

conditioned system of equations. 

  

Now in the later segments we'll talk about how do we do this quantitatively without 

having to do this. But as an illustration to illustrate the point that what does it mean 

that a particular system of equations well-conditioned and ill-conditioned, this is a 

very good example to follow. Let‘s say if this system of equations is 1 2 2 3 x y is it 

well conditioned system of equations or ill conditioned. We just want to illustrate the 

fact whether it is well-conditioned or ill-conditioned. So if you look at the, I didn't put 

the right hand side here it should be four and seven. So if we have this system of 

equations is it well-conditioned or ill-conditioned. The solution to this set of equations 

if you would either solve it or plug in these values of x equals 2 and y equal to 1 you 

are going to get four and 7 or if you solve these two questions two unknowns you will 

get x y to be two and one.  In order to find out whether this previous system of 

equations is well-conditioned or ill-conditioned I'm going to conduct two experiments. 

I'm going to make a small change in my caution matrix. 

  



So let me make a small change in my caution matrix. I'm going to make one-

thousandth of a difference to one. I'm going to make 2 to be 2.001. I'm going to make 

this to be 2.001 and I'm going to make this to be 3.001.  I'm going to say x y is equal 

to 4 and 7. So I have not made any changes in the right hand side but I made a very 

small change to the caution matrix right here by changing the cautions by a 

thousandth. And so what I get is x y when I solve these two equations two unknowns 

by hand or by a calculator or by Matlab I get 2.003 and 0.997. And you can very well 

see that 2.003 is very close to 2 and 0.997 is very close to 1. So a small change in 

the caution matrix does not result in a large change in my solution vector. A small 

change in the caution matrix resulted in a small change in my solution vector. Let's 

compare for the sake of completion of the experiment lets go and change the right 

hand side vector a little bit. So we have 2 1 2 2 3 x y equal to, we'll change the right 

hand side a little bit. 

  

So let‘s suppose we make this to be 4.001 and 7.001. So we are changing it by a 

thousandth here the right hand side vector. And when I saw this set of equations I 

found out that hey my x and y turned out to be equal to 1.999 and 1.001. So again 

this number is very close to two and this number is very close to one. So a small 

change in the right hand side resulted in a small change in my solution vector it did 

not result in a large change. So in this case if I'm conducting this experiment in 

finding out this particular system of equations is well-conditioned. Again, we want 

to  figure out what we mean by well-conditioned and ill conditioned systems of 

equations quantitatively not by just conducting these simply experiments right here. 

Just for illustration purposes we'll do that in the later segments.  But this is a good 

example of getting started on at least understanding the concept of ill-conditioned 

and well-conditioned equations. That is the end of this segment 
Iterative refinement is a technique introduced by Wilkinson for reducing the roundoff 
error produced during the solution of simultaneous linear equations. Higher precision 
arithmetic is required for the calculation of the residuals. 

Iterative refinement 

The first research paper I ever published, in 1967, was titled "Iterative Refinement in 
Floating Point". It was an analysis of a technique introduced by J. H. Wilkinson 
almost 20 years earlier for a post processing cleanup that reduces the roundoff error 
generated when Gaussian elimination or a similar process is used to solve a system 
of simultaneous linear equations, Ax=bAx=b. 
The iterative refinement algorithm is easily described. 

 Solve Ax=bAx=b, saving the triangular factors. 
 

 Compute the residuals, r=Ax−br=Ax−b. 
 

 Use the triangular factors to solve Ad=rAd=r. 
 



 Subtract the correction, x=x−dx=x−d 
 

 Repeat the previous three steps if desired. 
 

Complexity 

 

Almost all of the work is in the first step, which can be thought of as producing 
triangular factors such as LL and UU so that A=LUA=LU while solving LUx=bLUx=b. 
For a matrix of order nn the computational complexity of this step is O(n3)O(n3). 
Saving the factorization reduces the complexity of the remaining refinement steps to 
something much less, only O(n2)O(n2). 
The residual 

By the early 1960s we had learned from Wilkinson that if a system of simultaneous 
linear equations is solved by a process like Gaussian elimination or Cholesky 
factorization, the residual will always be order roundoff error, relative to the matrix 
and the computed solution, even if the system is nearly singular. This is both good 
news and bad news. 

The good news is that AxAx is always close to bb. This says that the computed 
solution always comes close to solving the equations, even though xx might not be 
close to the theoretical correct solution, A−1bA−1b. The pitcher always puts the ball 
where the batter can hit it, even though that might not be in the strike zone. 
The bad news is that it is delicate to compute the residual accurately. If the same 
precision arithmetic is used to compute the residual that was used to solve the 
system, the roundoff error involved in computing rr will be almost comparable to the 
effect of the roundoff error present in xx, so the correction has little chance of being 
useful. 
 
Inner product 

 

We need to use higher precision arithmetic while computing the residual. Each 
component of the residual involves a sum of products and then one final subtraction. 
The exact product of two numbers with a certain precision has twice that precision. 
With the computers that Wilkinson used, and that I used early in my career, we had 
access to the full results of multiplications. We were able to write inner product 
routines that accumulated the sums with twice the working precision. 

But it is not easy to write the accumulated inner product routine in modern, portable, 
machine independent software. It was not easy in Fortran. It is not easy in MATLAB. 
The original specification of the BLAS, the Basic Linear Algebra Subroutines, was 
deliberately silent on the matter. Subsequent proposals for extensions of the BLAS 
have introduced mixed precision, but these extensions have not been widely 
adopted. So, the key tool we need to implement iterative refinement has not been 
available. 

In my next blog post, I will describe two MATLAB functions residual3p and dot3p. 
They provide enough of what I call "triple precision" arithmetic to produce an 
accumulated inner product. It's a hack, but it works well enough to illustrate iterative 
refinement. 



Example 

 

My example involves perhaps the world's most famous badly conditioned matrix, the 
Hilbert matrix. I won't begin with the Hilbert matrix itself because its elements are the 
fractions 

hi,j=1i+j−1hi,j=1i+j−1 

Many of these fractions can't be represented exactly in floating point, so I would have 
roundoff error before even getting started with the elimination. Fortunately, the 
elements of the inverse Hilbert matrix are integers that can be readily generated. 
There is a function invhilb in the MATLAB elmat directory. I'll choose the 8-by-8. The 
elements are large, so I need a custom format to display the matrix. 
 

   n = 8; 

   A = invhilb(n); 

   disp(sprintf('%8.0f %11.0f %11.0f %11.0f %11.0f %11.0f %11.0f %11.0f \n',A)) 

 
64       -2016       20160      -92400      221760     -288288      192192      -51480  

   -2016       84672     -952560     4656960   -11642400    15567552   -10594584     
2882880  

   20160     -952560    11430720   -58212000   149688000  -204324120   141261120   
-38918880  

  -92400     4656960   -58212000   304920000  -800415000  1109908800  -
776936160   216216000  

  221760   -11642400   149688000  -800415000  2134440000 -2996753760  
2118916800  -594594000  

 -288288    15567552  -204324120  1109908800 -2996753760  4249941696 -
3030051024   856215360  

  192192   -10594584   141261120  -776936160  2118916800 -3030051024  
2175421248  -618377760  

  -51480     2882880   -38918880   216216000  -594594000   856215360  -
618377760   176679360  

 

I am going to try to compute the third column of the inverse of this inverse, which is a 
column of the Hilbert matrix itself. The right hand side b is a column of the identity 
matrix. I am hoping to get the fractions x = [1/3 1/4 ... 1/9 1/10]. 
 

   b = zeros(n,1); 

   b(3) = 1 

   format compact 
   format longe 



   x = A\b 

 
b = 

     0 

     0 

     1 

     0 

     0 

     0 

     0 

     0 

x = 

     3.333333289789291e-01 

     2.499999961540004e-01 

     1.999999965600743e-01 

     1.666666635570877e-01 

     1.428571400209730e-01 

     1.249999973935827e-01 

     1.111111087003338e-01 

     9.999999775774569e-02 

Since I know what x is supposed to look like, I can just eyeball the output and see 
that I have only about half of the digits correct. 
(I used backslash to solve the system. My matrix happens to be symmetric and 
positive definite, so the elimination algorithm involves the Cholesky factorization. But 
I'm going to be extravagant, ignore the complexity considerations, and not save the 
triangular factor.) 

Inaccurate residual 

 

Here's my first crack at the residual. I won't do anything special about the precision 
this time; I'll just use an ordinary MATLAB statement. 

   r = A*x - b 

r = 

    -9.094947017729282e-13 

     1.746229827404022e-10 



     4.656612873077393e-10 

     1.862645149230957e-08 

    -1.490116119384766e-08 

    -2.980232238769531e-08 

    -3.725290298461914e-08 

    -1.862645149230957e-08 

It's important to look at the size of the residual relative to the sizes of the matrix and 
the solution. 

   relative_residual = norm(r)/(norm(A)*norm(x)) 

relative_residual = 

     1.147025634044834e-17 

The elements in this computed residual are the right order of magnitude, that is 
roundoff error, but, since I didn't use any extra precision, they are not accurate 
enough to provide a useful correction. 

   d = A\r 

   no_help = x - d 

d = 

    -1.069920014936507e-08 

    -9.567761339244008e-09 

    -8.614990592214338e-09 

    -7.819389121717837e-09 

    -7.150997084009303e-09 

    -6.584022612326096e-09 

    -6.098163254532801e-09 

    -5.677765952511023e-09 

no_help = 

     3.333333396781292e-01 

     2.500000057217617e-01 

     2.000000051750649e-01 

     1.666666713764768e-01 

     1.428571471719701e-01 

     1.250000039776053e-01 



     1.111111147984970e-01 

     1.000000034355116e-01 

Accurate residual 

Now I will use residual3p, which I intend to describe in my next blog and which 
employs "triple precision" accumulation of the inner products required for an 
accurate residual. 
 

   r = residual3p(A,x,b) 

r = 

    -4.045319634826683e-12 

     1.523381421009162e-10 

    -9.919851606809971e-10 

     2.429459300401504e-09 

     8.826383179894037e-09 

    -2.260851861279889e-08 

    -1.332933052822227e-08 

    -6.369845095832716e-09 

Superficially, this residual looks a lot like the previous one, but it's a lot more 
accurate. The resulting correction works very well. 

   d = A\r 

   x = x - d 

d = 

    -4.354403560053519e-09 

    -3.845999016894392e-09 

    -3.439925156187715e-09 

    -3.109578484769736e-09 

    -2.836169428940436e-09 

    -2.606416977917484e-09 

    -2.410777025186154e-09 

    -2.242253997222573e-09 

x = 

     3.333333333333327e-01 

     2.499999999999994e-01 



     1.999999999999995e-01 

     1.666666666666662e-01 

     1.428571428571425e-01 

     1.249999999999996e-01 

     1.111111111111108e-01 

     9.999999999999969e-02 

I've now got about 14 digits correct. That's almost, but not quite, full double precision 
accuracy. 

Iterate 

Try it again. 

   r = residual3p(A,x,b) 

r = 

     3.652078639504452e-12 

    -1.943885052924088e-10 

     2.523682596233812e-09 

    -1.359348900109580e-08 

     3.645651958095186e-08 

    -5.142027248439263e-08 

     3.649529745075597e-08 

    -1.027348206505963e-08 

Notice that the residual r is just about the same size as the previous one, even 
though the solution x is several orders of magnitude more accurate. 

   d = A\r 

   nice_try = x - d 

d = 

     2.733263259661321e-16 

     2.786131033681204e-16 

     2.611667424188757e-16 

     2.527960139656094e-16 

     2.492795072717761e-16 

     2.196895809665418e-16 

     2.110200076421557e-16 



     1.983918218604762e-16 

nice_try = 

     3.333333333333324e-01 

     2.499999999999991e-01 

     1.999999999999992e-01 

     1.666666666666660e-01 

     1.428571428571422e-01 

     1.249999999999994e-01 

     1.111111111111106e-01 

     9.999999999999949e-02 

The correction changed the solution, but didn't make it appreciably more accurate. 
I've reached the limits of my triple precision inner product. 

More accurate residual 

Bring in the big guns, the Symbolic Math Toolbox, to compute a very accurate 
residual. It is important to use either the 'f' or the 'd' option when converting x to 
a sym so that the conversion is done exactly. 
 

%  r = double(A*sym(x,'d') - b) 
   r = double(A*sym(x,'f') - b) 

r = 

     3.652078639504452e-12 

    -1.943885052924088e-10 

     2.523682707256114e-09 

    -1.359348633656055e-08 

     3.645651780459502e-08 

    -5.142027803550775e-08 

     3.649529478622071e-08 

    -1.027348206505963e-08 

The correction just nudges the last two digits. 

   d = A\r 

   x = x - d 

d = 

    -6.846375178532078e-16 

    -5.828670755614817e-16 



    -5.162536953886886e-16 

    -4.533410583885285e-16 

    -3.965082139594863e-16 

    -3.747002624289523e-16 

    -3.392348053271079e-16 

    -3.136379972458518e-16 

x = 

     3.333333333333333e-01 

     2.500000000000000e-01 

     2.000000000000000e-01 

     1.666666666666667e-01 

     1.428571428571429e-01 

     1.250000000000000e-01 

     1.111111111111111e-01 

     1.000000000000000e-01 

Now, with a very accurate residual, the elements I get in x are the floating point 
numbers closest to the fractions in the Hilbert matrix. That's the best I can do. 
 

Gauss–Seidal iterative method 

 
Gauss–Seidel method is an improved form of Jacobi method, also known as 
the successive displacement method. This method is named after Carl Friedrich 
Gauss (Apr. 1777–Feb. 1855) and Philipp Ludwig von Seidel (Oct. 1821–Aug. 1896). 
Again, we assume that the starting values are u2 = u3 = u4 = 0. The difference 
between the Gauss–Seidel and Jacobi methods is that the Jacobi method uses the 
values obtained from the previous step while the Gauss–Seidel method always 
applies the latest updated values during the iterative procedures, as demonstrated 
in Table 7.2. The reason the Gauss–Seidel method is commonly known as the 
successive displacement method is because the second unknown is determined 
from the first unknown in the current iteration, the third unknown is determined from 
the first and second unknowns, etc. 

Table 7.2. Difference Between the Jacobi and Gauss–Seidel Iterative  

Procedures Assuming the Initial Values u2 = u3 = u4 = 0 for the Problem  

Outlined in Fig. 7.1  

Jacobi Method Gauss–Seidel Method 

https://www.sciencedirect.com/topics/engineering/jacobi-method


Jacobi Method Gauss–Seidel Method 

(u2)step1=(5u3)10=0.5u3=0 (u2)step1=(5u3)10=0.5u3=0 

(u3)step1=(5u2+5u4)10=0.5(u2+u

4)=0 

(u3)step1=[5(u2)step1+5u4]10=0.5(u2)step1+0.

5u4=0 

(u4)step1=(15+5u3)5=3+u3=3 (u4)step1=[15+5(u3)step1]5=3+(u3)step1=3 

Although the three resulting values for both methods are identical in the first step, 
you should be able to notice the subtle differences between the two methods. In the 
Jacobi method, no updates are applied until the next step. For the Gauss–Seidel 
method, the new u3 is calculated from the new u2 in the first equation, and 
the new u4 is calculated from the new u2 and u3 in the first and second equations. 
Note that while u2 also needs to be updated in the third equation, it just happens 
that u2 is not present in the third equation for this particular 
case. Table 7.3 and Fig. 7.3 show the iterative results and convergence steps of the 
Gauss–Seidel method for the same 4-node, 3-element problem used for the Jacobi 
method. 
 

Table 7.3. Iterative Results From the Gauss–Seidel Successive Displacement  

Method  

Iteration   U2 U3 U4 

1   0 0 3 

2   0 1.5 4.5 

3   0.75 2.625 5.625 

4   1.3125 3.46875 6.46875 

5   1.734375 4.101563 7.101563 

6   2.050781 4.576172 7.576172 

7   2.288086 4.932129 7.932129 

8   2.466064 5.199097 8.199097 

9   2.599548 5.399323 8.399323 

10   2.699661 5.549492 8.549492 



Iteration   U2 U3 U4 

11   2.774746 5.662119 8.662119 

12   2.831059 5.746589 8.746589 

13   2.873295 5.809942 8.809942 

14   2.904971 5.857456 8.857456 

15   2.928728 5.893092 8.893092 

16   2.946546 5.919819 8.919819 

17   2.95991 5.939864 8.939864 

18   2.969932 5.954898 8.954898 

19   2.977449 5.966174 8.966174 

20   2.983087 5.97463 8.97463 

 

 
 

Figure 7.3. Convergence processes of using the Gauss–Seidel iterative  

procedures for the 4-node, 3-element bar problem.  

 
Comparing results obtained from the Jacobi and Gauss–Seidel methods for this 
particular example problem, we observed that the convergence occurs much quicker 



for the Gauss–Seidel method. Although this is true in most problems, some special 
cases may have opposite results. In terms of computational efficiency, the 
simultaneous displacement (Jacobi) method is perfectly designed for parallel 
computing, because none of the variables within each iteration change until the 
iteration is completed. As such, all variables need to be stored in memory until the 
iteration is finished. On the other hand, the Gauss–Seidel method can replace each 
variable as soon as a new update becomes available. 
 
Other iterative procedures apply different and yet conceptually similar approaches. 
Thus, no further discussion is made regarding other iterative solvers. As seen in the 
two iterative procedures shown above, iterative methods slowly reach the final 
solution rather than a large final step, as seen in the backward substitution 
procedures of the Gauss elimination. 
 
In summary, the direct method requires more in-core computer memory, but the 
solutions are accurate. On the other hand, the indirect method reaches the final 
solution gradually. However, as the level of convergence can be set by the users, a 
lower precision may be desired in order to detect the potential trend of the changing 
design variables much quicker than the direct method can provide. 
 

Iterative Methods of Solution 

 

Jonathan M. Blackledget, in Digital Signal Processing (Second Edition), 2006 
9.1.2 The Gauss-Seidel Method 

 

The Gauss-Seidel method involves updating the sub-diagonal elements as the 
computation proceeds. The iteration process is 

x1k+1=1a11b1−a12x2k−…−a1nxnk,x2k+1=1a22b2−a21x1k+1−…−a2nxnk,⋮xnk+1=1

annbn−an1x1k+1−…−ann−1xn−1k+1. 

Solution to a System of Linear Algebraic Equations 

 

Sandip Mazumder, in Numerical Methods for Partial Differential Equations, 2016 
 

3.2.3 Gauss–Seidel method 

 

The Gauss–Seidel method is also a point-wise iteration method and bears a strong 
resemblance to the Jacobi method, but with one notable exception. In the Gauss–
Seidel method, instead of always using previous iteration values for all terms of the 
right-hand side of Eq. (3.31), whenever an updated value becomes available, it is 
immediately used. Thus, for the 3×3 example system considered earlier [Eq. (3.17)] 
when x is determined using Eq. (3.17a), both y and z assume previous iteration 
values. However, when y is determined using Eq. (3.17b), only z assumes a 
previous iteration value. For x, the most recent value, which happens to be the 
current iteration value (since it has already been updated), is used. In the context of 
solution of a 2D PDE on a structured mesh, if the node by node update pattern (or 
sweeping pattern) is from left to right and bottom to top, as shown in Fig. 3.3(a), 
then, by the time it is node O‘s turn to get updated, nodes W and S have already 
been updated, and these updated values must be used. Essentially, this implies that 

https://www.sciencedirect.com/topics/engineering/gauss-elimination
https://www.sciencedirect.com/science/article/pii/B9781904275268500105
https://www.sciencedirect.com/book/9781904275268/digital-signal-processing
https://www.sciencedirect.com/science/article/pii/B9780128498941000032
https://www.sciencedirect.com/book/9780128498941/numerical-methods-for-partial-differential-equations
https://www.sciencedirect.com/topics/mathematics/gauss-seidel-method
https://www.sciencedirect.com/topics/mathematics/pointwise
https://www.sciencedirect.com/topics/mathematics/iteration-method
https://www.sciencedirect.com/topics/mathematics/jacobi-method
https://www.sciencedirect.com/topics/engineering/previous-iteration
https://www.sciencedirect.com/topics/mathematics/pde
https://www.sciencedirect.com/topics/engineering/structured-mesh


only two out of the four terms on the right-hand side of the update formula are 
treated explicitly, as shown in Fig. 3.3(b). In general, the update formula for the 
Gauss–Seidel method may be written as 
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Figure 3.3. Pictorial Representation of the Gauss-Seidel Scheme  

(a) left-to-right and bottom-to-top sweeping pattern in the Gauss–Seidel method,  

and (b) explicitness versus implicitness with the sweeping pattern shown in (a).  

The nodes denoted by solid circles are treated explicitly while nodes denoted by  

hollow squares are treated implicitly.  

 

(3.32)ϕk(n+1)=Qk−∑j=1j≠kNnbu,kajϕj(n+1)−∑j=1j≠kNnb,k−Nnbu,kajϕj(n)ak, 

where Nnbu,k denotes the number of neighboring nodes to node k that have already 
been updated, and Nnb,k − Nnbu,k is the number of neighboring nodes to node k that 
have not been updated and are treated explicitly. It is clear from the preceding 
discussion and Fig. 3.3(b) that the Gauss–Seidel scheme has a higher degree 
of implicitness than the Jacobi method, and is, therefore, expected to yield faster 
convergence. However, the added implicitness would manifest itself only if the 
sweeping pattern is strictly adhered to, whatever that might be. Otherwise, 
the convergence behavior may revert back to that of the Jacobi method. The 
algorithm to use the Gauss–Seidel method for solution of the set of linear algebraic 
equations arising out discretization of the 2D Poisson equation [Eq. (2.48)] is 
presented below. 
Algorithm: Gauss–Seidel method 

Step 1: Guess values of ϕ at all nodes, i.e., ϕi,j ∀i=1,...,N and ∀j=1,...,M. We denote 
these values as ϕ(0). If any of the boundaries have Dirichlet boundary conditions, the 
guessed values for the boundary nodes corresponding to that boundary must be 
equal to the prescribed boundary values. 
 
Step 2: Set ϕ(n+1) = ϕ(n) and apply the Gauss–Seidel update formula, Eq. (3.32). For 
the interior nodes, this 

yields ϕi,j(n+1)=Si,j−⁡aEϕi+1,j(n)−aWϕi−1,j(n+1)−aNϕi,j+1(n)−aSϕi,j−1(n+1)aO, 
where the link coefficients are given by Eq. (3.21). For boundary conditions other 
than the Dirichlet type, appropriate values of the link coefficients must be derived 
from the nodal equation at that boundary, and an update formula must be used. 
Step 3: Compute the residual vector using ϕ(n+1), and then compute R2(n+1). 
 
Step 4: Monitor convergence, i.e., check if R2(n+1) < ɛtol? If YES, then go to Step 5. If 
NO, then go to Step 2. 
 
Step 5: Stop iteration and postprocess the results. 
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As opposed to the Jacobi method, in the Gauss–Seidel method, it is not necessary 
to store values of ϕ at both previous and current iterations. The same array may 
store a mixture of old and new values. As a matter of fact, in the update formula, it is 
not necessary to distinguish between old and new values. Within the same array, old 
values will be automatically replaced by new values as soon as they become 
available, and subsequently used in the update formula. Code Snippet 3.5 for the 
Gauss–Seidel scheme highlights some of these issues. 
 
Code Snippet 3.5 

Gauss–Seidel algorithm 
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The fact that the same array can be used in the Gauss–Seidel method to store both 

previous and current iteration values is an additional advantage of the Gauss–Seidel 

method over the Jacobi method. As in the case of the Jacobi method, the Gauss–

Seidel method, being a point-wise iterative method, can be used for both structured 

and unstructured meshes. The number of long operations in the Gauss–Seidel 

method is identical to that of the Jacobi method. To highlight the differences, 

especially in convergence behavior, between the Jacobi and the Gauss–Seidel 

method, a numerical example is considered next. 

 

Example 3.2 

In this example we consider solution of the Poisson equation, Eq. (2.41), in a square 

of unit length. The source term is assumed to be 

Sϕ=2sinh[10(x−12)]+40(x−12)cosh[10(x−12)]+100(x−12)2sinh[10(x−12)]+ 2sinh[10(y

−12)]+40(y−12)cosh[10(y−12)]+100(y−12)2sinh[10(y−12)]+. 4(x2+y2)exp(2xy) 

The boundary conditions are as follows: 

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method


ϕ(0,y)=14sinh(−5)+(y−12)2sinh[10(y−12)]+1,ϕ(1,y)=14sinh(5)+(y−12)2sinh[10(y−12)]

+exp(2y)ϕ(x,0)=14sinh(−5)+(x−12)2sinh[10(x−12)]+1,ϕ(x,1)=14sinh(5)+(x−12)2sinh[1

0(x−12)]+exp(2x). 

The analytical solution to system is given by 

ϕ(x,y)=(x−12)2sinh[10(x−12)]+(y−12)2sinh[10(y−12)]+exp(2xy). 

Equal mesh spacing is used in both directions. In this case, since we have Dirichlet 

boundary conditions on all boundaries, finite difference equations are needed only 

for the interior nodes, and these are given by Eq. (2.48). The resulting linear system 

is solved using both the Jacobi and Gauss–Seidel methods for various mesh sizes: 

41×41, 81×81, and 161×161. An initial guess equal to 0 was used for all interior 

nodes. For convergence, the tolerance was set to 10−6. The figure below shows the 

numerical solution obtained using the Jacobi method on the 81×81 mesh, as well as 

the error between the analytical and the numerical solution for two different mesh 

sizes. 

 

 

Sign in to download full-size image 

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method


 

Sign in to download full-size image 

 

Sign in to download full-size image 

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method
https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method


The error distributions [Top: 41 × 41, Bottom: 81 × 81] show that the error at each 

node decreases by a factor of 4 when the grid spacing is halved (maximum error 

goes from 0.1388 to 0.0348), once again highlighting the fact that the second-order 

central difference scheme was used. The Gauss–Seidel method yielded identical 

results. The plot below shows the convergence behavior of the two methods on the 

aforementioned three different mesh sizes (41×41 is not labeled). 
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The convergence plot clearly shows that the Gauss–Seidel method is roughly twice 

as efficient as the Jacobi method. This is to be expected based on our earlier 

contention that the more implicit the iterative scheme, the faster the convergence. 

Since two out of the four off-diagonal terms are treated implicitly in the Gauss–Seidel 

method, its convergence is superior. One important point to note is that in both 

methods, the number of iterations increases by approximately a factor of four when 

the number of nodes approximately quadruples. This implies that the CPU time 

would increase by a factor of 16 with quadrupling of the number of nodes. Ideally, it 

is desirable to have CPU time scaling linearly with the number of nodes. However, 

this is not the case here. It roughly scales as K2, which is still better than the cubic 

scaling of the Gaussian elimination algorithm. In Chapter 4, it will become clear why 

the convergence deteriorates with an increase in the number of nodes (i.e., a finer 

mesh). The actual CPU time taken by the Jacobi method on the 161×161 mesh was 

about 25 s on an Intel core i7 processor. 

In summary, two popular point-wise iteration schemes have been presented and 
demonstrated. The Gauss–Seidel method was found to be twice as effective as the 
Jacobi method. Both schemes have the advantage that they are simple to implement 
and are applicable to any mesh topology. Although the convergence is slow, the cost 
per iteration of both methods is also very low, making them attractive choices. 
However, their major shortcoming is that both schemes scale poorly, and the 
number of iterations go up by a factor of four when the number of nodes is increased 

https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Fgauss-seidel-method
https://www.sciencedirect.com/topics/mathematics/iterative-scheme
https://www.sciencedirect.com/topics/mathematics/gaussian-elimination
https://www.sciencedirect.com/topics/mathematics/mesh-topology


by a factor of four. 
 
MATRIX NORMS AND APPLICATIONS 

 

G.M. PHILLIPS, P.J. TAYLOR, in Theory and Applications of Numerical Analysis 
(Second Edition), 1996 
 
Algorithm 10.1 

 

The Gauss-Seidel method for solving n linear equations. An initial 
approximation X0 to the solution must be given, but this need not be very accurate. 

We stop when ‖ xm+ 1 − xm ‖∞ is less than ∈ (see Problem 10.31). 
set x = X0 
repeat 
 maxdiff: = 0 
 for i := 1 to n 
y:=(bi−∑j=1j≠inaijxj)/aii 

  if | y − xi | < maxdiff then maxdiff: = | y − xi | 
  xi := y 
 next i 

until maxdiff >∈ 
 

 

 

Basic Iterative Methods 

 

William Ford, in Numerical Linear Algebra with Applications, 2015 
 
20.2 The Gauss-Seidel Iterative Method 

 

In the Gauss-Seidel method, start with approximate values x2(0),…,xn(0) if known; 
otherwise choose x(0) = 0. Use these values to calculate x2(0),…,xn(0). 
Use x1(1) and x1(1) to calculate x3(0),…,xn(0), and so forth. At each step, we are 
applying new vector component values as soon as we compute them. The hope is 
that this strategy will improve the convergence rate. Applying this method 
with Equation 20.1, we have the iteration formula: 
(20.3)x1(k)=1a11[b1−(∑j=2na1jxj(k−1))] 

(20.4)xi(k)=1aii[bi−(∑j=1i−1aijxj(k)+∑j=i+1naijxj(k−1))], i=2,3,…,n−1 

(20.5)xn(k)=1ann[bn−∑j=1n−1anjxj(k)] 

Example 20.2 
 
Use the matrix of Example 20.1 and apply the Gauss-Seidel method, with the 
iteration defined by Equations 20.3–20.5. Begin with x(0) = 0, execute the first two 
iterations in detail, continue for a total of 12 iterations, and compute the relative 
residual. 
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                 x1(1)=15(1)=0.2000, 

x2(1)=14[−2−(−15+(1)0)]=−0.4500,x3(1)=−17[5−((1)15+6(−920))]=−1.0714                x1

(2)=15[1−((−1)(−920)+2(−1514))]=0.5386,x2(2)=14[−2−((−1)377700+(1)(−1514))]=−

0.0975,x3(3)=−17[5−((1)(377700)+6(−39400))]=−0.7209                             ⋮                x1(12)

=0.4837, x2(12)=−0.1794, x3(12)=−0.7989‖b−Ax(12)‖2‖b‖2=2.8183×10−7 

If you compare this result with that of Example 20.1, it is clear that the Gauss-Seidel 
iteration obtained higher accuracy in the same number of iterations. 
 
High-performance computing for multiphysics problems 

 

In Multiphysics Modeling, 2016 
 
7.3.1 Gauss–Seidel versus Jacobi iteration methods 

 

For the staggered Gauss–Seidel method, each physics model is solved sequentially. 
This means that each physics solver will have all of the computing resources when it 
is actively being solved while the others hang and wait for finishing and vice versa. 
This means that each physics solver should use as many processors as possible 
when it is active and to stay with minimum memory and processor usage when it is 
idle. When the Gauss–Seidel iteration method is used, no waiting time is needed. 
Each physics solver can maintain good scalability and efficiency if it uses the 
maximum available computing processors when active. Figure 7.3 shows the 
processors‘ usage and the data communication points (the dots) for the weak 
coupling Gauss–Seidel iteration method. 
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On the other hand, the Jacobi iteration method allows the physics models involved in 
the coupling to be solved simultaneously (in parallel). Figure 7.3 demonstrates the 
processors‘ usages and the synchronization points for the Jacobi iteration method. In 
this algorithm, the load balance needs to be considered before starting the solving 
process; otherwise, a longer wait time will be needed at the synchronization load 
transfer points. Because different physics models have different computational 
complexity and matrix quality, balancing the loads to make all physics solvers to 
finish one coupling iteration with closest time amount becomes a challenging work 
for parallel computing. The Gauss–Seidel method is the easiest to use when each 
physics solver still has good scalability to use the entire available processors (Figure 
7.4). 

 

 

Figure 7.4. Parallel Jacobi iteration method.  

 

Design Algorithms and Guidelines 

 

Amir Sharif Ahmadian, in Numerical Models for Submerged Breakwaters, 2016 
 

Jacobi’s Method 

 

Jacobi method is nearly similar to Gauss-Seidel method, except that each x-value is 
improved using the most recent approximations to the values of the other variables. 
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Considering similar set of equations as Gauss-Seidel method, we can similarly 
define matrix A as before by assuming that the diagonal terms of matrix A have non-
zero values, then we can rewrite 

(10.254)xik+1=bi−∑j≠iaijxjkaii,k=0,1,… 

The iterative process is terminated when a convergence criterion is satisfied. 
Unlike the Gauss-Seidel method, the previous estimations are not instantly replaced 
by the new values in Jacobi method, thus the storage space required is twice the 
Gauss-Seidel method and the convergence rapidness is lower. 

Temporal Discretization 

 

Jiri Blazek PhD, in Computational Fluid Dynamics: Principles and Applications (Third 
Edition), 2015 
 
LU-SGS on structured grids 

 

On structured grids, the operators are defined as (see Refs. [50–52, 55, 73]) 
(6.51)ĀĀĀĀĀĀĀĀĀĀĀĀĪĀĀĀĀĀĀĀĀĀĀĀĀL=Ā++Āvi−1ΔSi−1/2I+Ā++Āvj−1ΔSj−1/2J

+Ā++Āvk−1ΔSk−1/2K,U=Ā−−Āvi+1ΔSi+1/2I+Ā−−Āvj+1ΔSj+1/2J+Ā−−Āvk+1ΔSk+1/2

K,D=ΩΔtĪ+Ā−−ĀvΔSi−1/2I+Ā−−ĀvΔSj−1/2J+Ā−−ĀvΔSk−1/2K+Ā++ĀvΔSi+1/2I+Ā++

ĀvΔSj+1/2J+Ā++ĀvΔSk+1/2K−∂(ΩQ→)∂W→. 

For better readability, only those node indexes (or cell indexes in the case of a cell-
centered scheme) are shown in Eq. (6.51), which differ from i,j,k. The 
superscripts i,j,k at ΔS indicate the direction in the computational space. The unit 
normal vectors in the positive/negative flux Jacobians ĀĀ± and in the viscous flux 
Jacobians ĀĀv are evaluated at the same side of the control volume like the 
associated face areas ΔS. Note that the unit normal vectors are assumed to point 
outwards of the control volume. In contrast, in various references it is supposed that 
the unit normal vectors from opposite sides of the control volume point in the same 
direction. 
 
The viscous flux Jacobians in Eq. (6.51) are computed either numerically, or are 
replaced by their TSL approximation, corresponding to Eq. (6.45). It is possible to 
apply the TSL approximation in all computational coordinates, regardless of the 
actual orientation of the boundary layer(s). A further simplification consists of 
substituting the viscous flux Jacobians by the viscous spectral radii (Eq. (6.19)), that 
is, ĀĀvΔS≈Λ^v, as suggested in [65]. 
 
The split convective flux Jacobians ĀĀ± are constructed in such a way that 
the eigenvalues of the (+) matrices are all non-negative, and of the (−) matrices are 
all non-positive. In general, the matrices are defined as [49] 
(6.52)ĀĀĪĀ±ΔS=12ĀcΔS±rAĪ,rA=ωΛ^c, 

where ĀĀc stands for the convective flux Jacobian (Section A.9) and Λ^c represents 
the spectral radius of the convective flux Jacobian (given by Eq. (4.53) or (6.15)), 
respectively. Note the similarity between the above approximation (6.52) and Eq. 
(6.40), when the derivatives of ĀĀc are neglected. The factor ω in Eq. (6.52) 
represents an overrelaxation parameter. It also determines the amount of implicit 
dissipation and hence it influences the convergence properties of the scheme. The 
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factor can be chosen in the range 1 < ω ≤ 2. Higher values of ω increase the stability 
of the LU-SGS scheme, but may slow down the convergence to steady state. The 
definition of the Jacobians ĀĀ± in Eq. (6.52) ensures a diagonally dominant system 
matrix, which is very important for the efficiency and robustness of the iterative 
inversion procedure (6.50). 
 
The splitting according to Eq. (6.52) allows together with averaged face vectors for a 
simplified evaluation of the diagonal operator D 
(6.53)ĪĀĀĀD=ΩΔt+ωΛ^cI+Λ^cJ+Λ^cKĪ+2ĀvIΔSI+ĀvJΔSJ+ĀvKΔSK−∂(ΩQ→)∂W→. 

The spectral radii of the convective flux Jacobians Λ^c are given in Eq. (6.15). The 
face areas and normal vectors are averaged in the respective I-, J-, or K-direction 
according to Eq. (6.16). As we shall see immediately, this approximation helps to 
reduce the operation count and the memory requirements significantly. 
 
A distinguishing feature of the LU-SGS method is how the forward and the backward 
sweep in Eq. (6.50) are carried out. In 2D, the sweeps are accomplished along 
diagonal lines (i + j) = const. in computational space. This is depicted in Fig. 6.5 for 
the forward sweep (first line of Eq. (6.50)). In this way, the off-diagonal terms 
involved in the L and the U operator become known from the previous part of a 
sweep (denoted by crosses in Fig. 6.5). In 3D, the implicit operator is inverted 
on i + j + k = const. planes, as sketched in Fig. 6.6. Hence, the LU-SGS scheme can 
be written as 
 
 

 

 

Figure 6.5. Sweeping direction of the LU-SGS scheme in computational space: •  
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denotes where the operator D is currently inverted (line i + j = const.); × denotes  

the already updated values of L.  

 

Figure 6.6. Diagonal plane of sweep in computational space for the implicit LU-

SGS scheme in 3D.  

 

(6.54)DΔW→i,j,k(1)=−R→i,j,kn−LΔW→(1),DΔW→i,j,kn=DΔW→i,j,k(1)−UΔW→n. 

As we can see from Eq. (6.54), the only term which needs to be inverted is the 
diagonal term D. Thus, the LU-SGS methodology transforms the inversion of a 
sparse banded matrix into the inversion of a block-diagonal matrix. Furthermore, if 
the viscous flux Jacobians in Eq. (6.53) are approximated by the viscous spectral 
radii, the operator D becomes a diagonal matrix (except for the source term).Hence, 
the LU-SGS scheme requires a very small computational effort as compared to other 
implicit schemes (e.g., the ADI scheme discussed previously). Furthermore, the 
inversion of the diagonal operator can be carried out independently for each node 
(cell) of the diagonal plane, which makes the scheme easy to vectorize. The indexes 
of the nodes/cells on the diagonal planes can be obtained with the following pseudo-
code [79]: 

DO plane = 1, nplanes 
 DO k = 1, kmax 
 DO j = 1, jmax 
 DO i = 1, imax 
 IF (i+j+k = plane+2) store indexes 
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 ENDDO 

 ENDDO 

 ENDDO 

ENDDO 

The number of diagonal planes is: nplanes = imax + jmax + kmax − 2. Obviously, the 
above code can be optimized for higher computational efficiency. 
In order to avoid explicit evaluation and storage of the convective flux Jacobians 
in L and U, the products ĀĀ±ΔW→n can be substituted by Taylor series 
expansion of the fluxes [53]. Using Eq. (6.52), we can write 
(6.55)ĀĪ(Ā±ΔS)ΔW→n≈12ΔF→cΔS±rAĪΔW→n 

with the update of the convective fluxes 
(6.56)ΔF→c=F→cn+1−F→cn. 

The simplification given by Eq. (6.55) is possible due to the sweeping along diagonal 
planes, since F→cn+1 is then known. This leads to a further significant decrease of 
the numerical effort of the LU-SGS scheme. 
 
The time step Δt can be computed in the same way as presented in Section 6.1.4, 
using Eq. (6.14). However, it should be noted that the implicit LU-SGS scheme in Eq. 
(6.49) represents an approximate Newton iteration in the case of Δt→∞ as stated by 
Rieger and Jameson [53]. Thus, in general, CFL numbers of the order of 104 to 
106 are used in practice for stationary flows. The convergence is then controlled by 
the overrelaxation parameter ω. For the simulation of unsteady flows, we may 
employ the formulation presented below in Section 6.3. Another possibility is to use 
the modified version of the LU-SGS scheme described in Ref. [80]. 
 
Stability and Convergence of Iterative Solvers 

 

Sandip Mazumder, in Numerical Methods for Partial Differential Equations, 2016 
 
4.5.1 Geometric multigrid (GMG) method 

 

The GMG method is best understood by considering the scenario where only two 
grids – ―coarse‖ and ―fine‖ – are used. The two-grid algorithm serves as the core 
framework for a general multigrid algorithm, as will be shown later. Prior to designing 
any multigrid algorithm, it should be noted that the accuracy of the final solution must 
be that of the fine mesh. The coarse mesh can only be used to accelerate the 
convergence; not to compute the final solution. The two-grid algorithm is presented 
next, with a discussion of the relevant concepts at each step. As an example, we 
consider the solution of the 2D Poisson equation on a rectangular domain 
with Dirichlet boundary conditions on all sides. 
 
Step 1: Generating meshes and their relationships. 
 
The first step in the execution of the GMG algorithm is generation and storage of the 
mesh at various levels. Figure 4.3 shows the ―coarse‖ (C) and ―fine‖ (F) grids for a 
rectangular domain in the case of a two-grid algorithm. Every coarse-grid node, 
defined by the pair (I,J), has a corresponding fine-grid node sitting atop it, and is 
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defined by the pair (i,j). Therefore, the fine-grid indices may be expressed in terms of 
the coarse-grid indices as follows: 
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Figure 4.3. Coarse- and Fine-Grid Nodal Arrangements in a Two-Grid Algorithm  

with Uniform Mesh Spacing  

Coarse-grid nodes, denoted by crosses, are at the intersections of solid lines,  

while fine-grid nodes, denoted by open circles, are at the intersections of both  

dotted and solid lines.  

 

(4.52)(i,j)=(2I−1,2J−1). 

If the total number of fine-grid and coarse-grid nodes in the i (or j) direction are 
denoted by NF (or MF) and NC (or MC), respectively, then the following relationships 
are also true: 
(4.53)NF=2NC−1MF=2MC−1. 

Thus, for example, a 21×21 mesh should be combined with a 41×41 mesh to 
develop a two-grid algorithm. It follows that the grid spacings for the coarse and fine 
grids are given by 

(4.54)ΔxC=LNC−1,⁡⁡⁡⁡ΔyC=HMC−1ΔxF=LNF−1,⁡⁡⁡⁡ΔyF=HMF−1. 

The corresponding nodal equations on the coarse and fine grids are written as 
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(4.55a)2(ΔxF)2+2(ΔyF)2ϕi,jF−1(ΔxF)2ϕi+1,jF−1(ΔxF)2ϕi−1,jF−1(ΔyF)2ϕi,j+1F−1(ΔyF

)2ϕi,j−1F=−Si,j, 

(4.55b)2(ΔxC)2+2(ΔyC)2ϕI,JC−1(ΔxC)2ϕI+1,JC−1(ΔxC)2ϕI−1,JC−1(ΔyC)2ϕI,J+1C−

1(ΔyC)2ϕI,J−1C=−SI,J. 

Step 2: Set initial guess 
 
The next step in the algorithm is to initialize the dependent variable on the fine grid. 
Since the fine-grid solution is what we are ultimately interested in, it is sufficient to 
initialize (guess) the solution at the fine-grid nodes. Let this solution be denoted 
by ϕi,jF(0). If Dirichlet boundary conditions are used, the initial guess at the boundary 
nodes should be set equal to the prescribed boundary value. 
Step 3: Smoothing on fine grid 
 
Next, the algebraic equations on the fine grid are solved using a solver of choice, but 
only to partial convergence. While any solver, discussed in Chapter 3, may be used 
for this purpose, it is important to choose one that is easy to implement and whose 
computational workload per iteration is small. This is because in the context of the 
GMG algorithm, the solver is not solely responsible for reducing the errors. Rather, 
the multigrid framework is. In other words, the overall iteration count is not dictated 
by the solver but rather by the multigrid treatment of the errors. The solver to be 
used is also known as the smoother, and the operation of solving the fine-grid 
equations to partial convergence is known as smoothing. Based on the criterion of 
low computational workload per iteration, it is customary to use classical iterative 
solvers for the smoothing operation rather than fully implicit solvers, such as the 
Krylov subspace solvers. The Gauss–Seidel method is a popular choice as the 
smoother for multigrid algorithms, primarily because of its extremely low workload 
per iteration, its ease of implementation, and also the fact that it can be used for both 
structured and unstructured mesh topologies. 
 
It is clear that solving the fine-grid equations to full convergence in this step would be 
tantamount to not using the multigrid method at all. Instead, the solution is taken only 
to partial convergence. To the best of the author‘s knowledge, there is no reported 
mathematical analysis that shows the optimum level of partial convergence that is 
universally applicable to all problems. Generally, iterations are continued until 
the R2F decreases by a factor of about two. Often, calculation and monitoring of the 
scaled residual, as would be required if the residual were to be decreased by a factor 
two, is completely bypassed, and one or two sweeps of Gauss–Seidel is executed 
instead. This makes the implementation even easier. 
 
At this point in the algorithm, the solution on the fine grid, ϕi,jF, contains errors due to 
partial convergence. This error (equal to the difference between the exact numerical 
solution and the solution at the current iteration) has several different wavelength 
components. As discussed in Section 4.2.1, of these, the components that have 
large wavelengths are the most difficult to damp out (or have their amplitudes 
reduced). Therefore, instead of continuing with regular smoothing (Gauss–Seidel 
iterations on the fine grid, for example), which would not specifically target the large 
wavelength components, we transfer this error to a coarse grid and then smooth it on 
the coarse grid so that they are reduced rapidly. In preparation for these actions, the 
following step is executed next. 
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Step 4: Computation of residual on fine grid 
 
The residual and L2Norm are computed on the fine grid using [R] F=[Q]−[A]F[ϕ]F, 
and R2 F=[R]FT[R]F. 
 
Step 5: Transfer of fine-grid residual to coarse grid (restriction) 
 
The residual computed on the fine grid in Step 4 is next transfered to the coarse grid. 
This process is known as restriction. Since every fine-grid node has a coarse-grid 
node sitting atop it, the restriction operation simply involves copying the residuals on 
the fine grid to an array (data structure) that stores residuals for the coarse grid. The 
loops used to perform this transfer should run over the indices of the coarse grid and 
Eq. (4.52) should be made use of to obtain corresponding fine-grid indices. 
Henceforth, the residual transferred from the fine to the coarse grid will be denoted 
by [R]C←F. For a more complex grid structure, the coarse- and fine-grid nodes may 
not always overlap. In such a scenario, interpolation will be necessary to execute the 
transfer process. 
 
Step 6: Smoothing on coarse grid 
 
The transferred residuals are next smoothed on the coarse grid with the specific 
intent to damp out the large wavelength components of the error rapidly. This 
operation entails solution of the equation [A]C[ϕ′]C=[R]C←F to partial convergence, 
where [A]C is the coefficient matrix computed on the coarse mesh [see Eq. (4.55b)] 
and [ϕ′]C is the predicted correction on the coarse mesh. As in Step 3, a solver with 
a low computational workload and one that is easy to implement must be used. The 
equation [A]C[ϕ′]C=[R]C←F essentially represents the governing linear system in 
correction form (see Section 3.2.1). Generally, tighter tolerance or more sweeps 
(typically two or three, as opposed to one) is needed in this step than in Step 3 to 
obtain an accurate enough prediction of the correction. The Gauss–Seidel method is 
also a commonly used method for this step. 
 
Step 7: Transfer of coarse-grid correction to fine grid (prolongation) 
 
The correction obtained on the coarse grid, [ϕ']C, is next transferred to the fine grid. 
This process is known as prolongation. Execution of the prolongation step involves 
interpolation since all fine-grid nodes do not have coarse-grid nodes sitting atop 
them. The transfer of [ϕ']C can be classified into three categories. For the fine-grid 
nodes that have coarse grid-nodes sitting atop them, the correction is transferred 
directly. For the remaining nodes, two possibilities exist, as shown in Fig. 4.4. 
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Figure 4.4. Two Interpolation Scenarios in the Two-Grid Algorithm  

(a) Two-point interpolation for fine-grid nodes placed along coarse-grid lines, and  

(b) four-point interpolation for fine-grid nodes offset from coarse-grid lines.  

Coarse-grid nodes are denoted by crosses, while fine-grid nodes are denoted by  

open circles.  

 
Based on the two possibilities depicted in Fig. 4.4, either two-point or four-point 
interpolation is needed to compute fine-grid values from coarse-grid values, as 
follows: 
Two-point: 

(4.56a)ϕ′i+1,j F←C=ϕ′I,J C+ϕ′I+1,J C2,⁡⁡⁡⁡⁡⁡ϕ′i,j+1 F=ϕ′I,J C+ϕ′I,J+1 C2, 

Four-point: 

(4.56b)ϕ′i+1,j+1 F←C=ϕ′I,J C+ϕ′I+1,J C+ϕ′I,J+1 C+ϕ′I+1,J+1 C4. 

 

The transferred correction is denoted by [ϕ′]F←C. In the general case of 
a nonuniform or curvilinear mesh, distance-weighted interpolation must be used. 
Distance-weighted interpolation is discussed in detail in Chapter 7. 
Step 8: Update of fine-grid solution 
 
The fine-grid solution, obtained in Step 3, is next updated by adding to it the 
correction obtained in Step 7: [ϕ]F=[ϕ]F+[ϕ′]F←C. At this juncture, one complete 
cycle of the multigrid (two-grid) algorithm has been completed. 
 
Step 9: Check for convergence 
 
Convergence is checked by monitoring the residual computed at Step 4, i.e., 
is ɛR2 F<ɛtol? Although the residual computed in Step 4 is lagging behind by one 
iteration, it is preferable to use it to monitor convergence to avoid computation of the 
residual twice within the same iteration. If the convergence criterion has not been 
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satisfied, Steps 3–9 must be repeated. 
 
The two-grid algorithm, just described, may be thought of as a detour from the 
original Gauss–Seidel method (assuming that Gauss–Seidel is the smoother and 
only one sweep of Gauss–Seidel is performed in Step 3) in which, rather than arrive 
directly at Step 9 from Step 5, a detour is taken, wherein the errors are smoothed 
further with particular emphasis on reducing the large-wavelength components of the 
errors. Whether or not this strategy is really effective will be examined through an 
example problem shortly. Assuming that the strategy is effective and results in 
significant reduction in iteration count, it is important at this point to tally the number 
of extra floating-point operations introduced by the extra steps. For solution of a 
2D PDE, Step 3 requires four multiplications and one division per node if one sweep 
of the Gauss–Seidel method is used, resulting in 5NFMF long operations. Another 
five multiplications per node are needed to compute the residual in Step 4, bringing 
the total to 10NFMF long operations. Step 5 does not require any arithmetic 
operation. Step 6 requires five long operations per coarse grid node per sweep. 
However, the number of coarse grid nodes is approximately one-fourth that of the 
fine grid nodes. Assuming that three sweeps are used, Step 6 effectively requires 
3.75NFMF long operations, resulting in a total of 13.75NFMF long operations. The 
prolongation operation of Step 7 requires approximately 0.75NFMF long operations to 
execute [Eq. (4.56)]. Thus, the total number of long operations needed by the two-
grid GMG algorithm is approximately 14.5NFMF. In contrast, the core Gauss–Seidel 
algorithm would require approximately 10NFMF long operations. Thus, the workload 
increase per iteration in the two-grid GMG is about 50%. As long as the iteration 
count is reduced by more than 50%, the two-grid GMG algorithm is expected to be 
beneficial from the overall computational time standpoint. An example is considered 
next to assess the pros and cons of the two-grid algorithm. 
 
Example 4.9 

The solution to the problem, considered in Examples 3.2–3.6, is attempted here with 

the two-grid algorithm. The following grid combination is used: 81×81 (coarse) with 

161×161 (fine). The residual plot for the 81×81 (coarse)/161×161 (fine) grid 

combination is shown below along with the residuals of the pure Gauss–Seidel 

method executed on the 161×161 grid separately. 
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The geometric two-grid algorithm results in tremendous reduction in the iteration 

count, requiring only 4450 iterations as opposed to the 57,786 iterations required by 

the pure Gauss–Seidel method – a factor of 13 reduction. As far as computational 

times are concerned, the two-grid algorithm on the 81/161 grid combination required 

5.42 seconds, compared to 24.1 seconds required by Gauss–Seidel – a factor of 

4.44 reduction. Clearly, the computational times did not scale exactly as the 

iterations. As discussed earlier, this is due to the increased workload per iteration. 

The benefit of using the multigrid method is best understood by closer examination 

of the errors before and after the coarse-grid smoothing operation. The figures below 

show the convergence error after one sweep (first figure below) of Gauss–Seidel 

(Step 3), and also shortly after the prolongation and update (second figure below) 

step (Step 8). 

It is worth recalling that Steps 4–8 represent a detour (the multigrid smoothing of the 

errors) from the main Gauss–Seidel algorithm. 
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The error contours exhibit a noticeable reduction in the error after the coarse-grid 
smoothing operation. In particular, the sharp peaks and valleys have been 
significantly reduced: the maximum positive error has been reduced from 38.2 to 
26.1, while the maximum negative error has been reduced from −25.4 to −16.3. 

The preceding example illustrates the benefits of targeted reduction of the large-
wavelength components of the error as a means to accelerating overall 
convergence. However, this remarkable idea would remain largely underutilized if 
one were to stop at using just two grids. General-purpose multigrid algorithms make 
use of the basic two-grid idea to construct a hierarchical error reduction framework 
using many grid levels. The sequence of smoothing–restriction–correction–
prolongation steps that are followed in such algorithms is referred to as multigrid 
scheduling. While a large variety of multigrid scheduling algorithms are available, the 
three most commonly used ones are the V-cycle, the W-cycle, and the full multigrid 
(FMG) cycle. 
 
In order to understand the role of additional (beyond two) grid levels in the GMG 
algorithm, we first consider the V-cycle multigrid algorithm, depicted in Fig. 4.5(a). 
For additional clarity, a three-grid algorithm with all relevant details is shown in Fig. 
4.5(b). In the discussion to follow, instead of using superscripts ―C‖ and ―F‖ to denote 
grid levels, we will use the grid level numbers shown in Fig. 4.5(a). 
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Figure 4.5. The V-cycle GMG Algorithm  

(a) The scheduling sequence, and (b) detailed work plan in the context of a  

three-grid algorithm. ―S‖ refers to the smoothing operation, ―C‖ refers to the error  
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correction operation, and ―U‖ refers to the final solution update. The solid arrows  

represent restriction steps, while the dotted arrows represent prolongation steps.  

 
The V-cycle multigrid algorithm commences with iterative solution of the linear 
system to partial convergence on the finest grid (Grid 1). The residual is then 
transferred to the next finest grid (Grid 2) and smoothed using an iterative solver. If, 
rather than using a few sweeps on Grid 2, iterations were continued, the solution for 
the correction, [ϕ']2, would be a lot more accurate and devoid of the large- 
 
wavelength components corresponding to Grid 2. However, as we already know, this 
would require a large number of iterations on Grid 2, and would defeat the purpose 
of using a multigrid method. Instead, we could envision using another multigrid 
algorithm to damp out the errors on Grid 2. Of course, that would require at least one 
more grid, i.e., Grid 3. Essentially, this leads to the idea of using a multigrid algorithm 
within the original multigrid algorithm, as depicted in Fig. 4.5(b). If this process were 
to be continued, we would end up having several multigrid algorithms nested within 
each other, leading to the concept of recursion. If programmed in a modular fashion, 
with advanced programming languages, it is possible to use recursion with relative 
ease. When does the process of using additional grid levels stop? Recalling that the 
objective is to obtain an accurate prediction of the correction on the coarsest mesh 
level, the process may be stopped when the mesh is so coarse that a direct solution 
of the system [A][ϕ']=[R] is possible using Gaussian elimination. This scenario for 
terminating the process is the best-case or ideal scenario. In practice, the number of 
grid levels is often determined by the overheads incurred in interpolation, storage of 
multiple grids, and other factors. It is worth remembering that practical problems are 
rarely solved on a rectangular domain with perfectly orthogonal (Cartesian) meshes, 
and therefore, one has to actually generate multiple meshes and 
construct interpolation functions prior to executing the multigrid algorithm. Hence, in 
practice, the number of grid levels is often not sufficient and the coarsest grid is not 
coarse enough to enable direct solution of the linear system. In order to highlight 
some of the aforementioned issues, Example 4.9 is repeated with multiple grid levels 
and the V-cycle. 
 
Example 4.10 

The solution to the problem considered in Example 4.9 is repeated here with the V-

cycle GMG algorithm. The finest grid considered is a 161×161 mesh, and the grid is 

progressively coarsened by a factor of two to obtain additional grid levels. The table 

below summarizes the number of iterations and the computational time required by 

the overall algorithm as a function of the number of grid levels. The CPU times 

reported are for computations performed on a 2.2 GHz Intel core i7 processor with 8 

GB of RAM. The tolerance used for convergence was 10−6. The residuals for the 

four cases are also shown in the figure below. 
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Grid levels Iterations CPU time (s) 

2 (161,81) 4450 5.42 

3 (161,81,41) 947 1.28 

4 (161,81,41,21) 219 0.32 

5 (161,81,41,21,11) 66 
0.10 

 

The results shown in the table above and the figure below clearly illustrate the 

remarkable power of the multigrid method. With the addition of each grid level the 

number of iterations decreases by approximately a factor of 4 to 5. Of course, the 

CPU time does not scale exactly with the number of iterations, as expected, due to 

increased workload per iteration, especially when the number of grid levels used is 

relatively large. 
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One of the remarkable properties of the multigrid algorithm is its scaling. Of the 
solvers considered in Chapter 3, the best scaling was produced by the CG solver, 
where the number of iterations required for convergence increased by a factor of 
approximately two when the number of nodes was quadrupled (see Example 3.8). 
Such scaling is typical of the CG or conjugate gradient square (CGS) method, in 
which the workload (or computational time) scales as K3/2 [1]. If the problem 
considered in Example 4.10 is computed on a 81×81 grid with the V-cycle GMG 
method with 4 grid levels, convergence is attained in 62 iterations. This is quite 
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remarkable because it implies that the same problem can be solved on a 81×81 grid, 
as well as a 161×161 grid with roughly the same number of iterations (the 161×161 
grid required 66 iterations) by simply using an additional coarse-grid correction. 
Since the workload on the coarsest mesh is negligible, it implies that the total 
workload scales approximately as the number of nodes, since the number of 
iterations remains more or less unchanged between the 81×81 and the 161×161 
grid. Thus, the multigrid algorithm is fundamentally an O(K) algorithm, in which the 
workload (or computational time) is directly proportional to the number of 
unknowns, K. As mentioned in Chapter 3, linear scaling with problem size is the 
best-case scenario as far as the performance of iterative solvers is concerned. 
Other multigrid scheduling cycles aim to improve upon the performance of the V-
cycle. The W-cycle, and the FMG cycles are depicted schematically in Fig. 4.6. The 
W-cycle scheduling makes use of the fact that the computational workload at the 
coarsest grid levels is almost negligible. Therefore, rather than execute the upward 
prolongation steps all the way to the finest grid, a second set of restriction and 
smoothing operations are performed on the coarse-grid levels prior to executing the 
complete prolongation-update branch. Analysis shows that this strategy generally 
leads to a reduction in the iteration count. The FMG algorithm starts at the coarsest 
grid level. The solution at the coarsest grid is interpolated (prolongated) to the next 
fine grid and is used as an initial guess for the smoothing on that grid. The error is 
then restricted back to the coarsest mesh and in the next step, two successive 
prolongation steps are executed using two grid levels above the coarsest grid 
followed by two successive restriction steps, and so on. The FMG algorithm 
essentially executes a series of inverted two-grid V-cycles with growing sizes of V. It 
is believed to yield superior performance to either the V- or W-cycles [3,4], and is the 
best option for applications where adaptive grid refinement is used. Other multigrid 
schedules, such as the F-cycle (F stands for flexible) and the saw-tooth cycle, are 
also used. For a description of these, and for further in-depth reading on the multigrid 
method, the reader is referred to texts focused specifically on multigrid 
methods [3,4]. 

 



Rate of Convergence 
 

In numerical analysis, the speed at which a convergent sequence approaches its 
limit is called the rate of convergence. Although strictly speaking, a limit does not 
give information about any finite first part of the sequence, this concept is of practical 
importance if we deal with a sequence of successive approximations for an iterative 
method as then typically fewer iterations are needed to yield a useful approximation 
if the rate of convergence is higher. This may even make the difference between 
needing ten or a million iterations.Similar concepts are used 
for discretization methods. The solution of the discretized problem converges to the 
solution of the continuous problem as the grid size goes to zero, and the speed of 
convergence is one of the factors of the efficiency of the method. However, the 
terminology in this case is different from the terminology for iterative methods. 

The rate of convergence of an iterative method is represented by mu (Î¼) and is 
defined as such:  

Suppose the sequence{xn} (generated by an iterative method to find an 
approximation to a fixed point) converges to a point x, then  

limn->[infinity] = |xn+1-x|/|xn-x|[alpha]=Î¼, where Î¼â‰≦0 and Î±(alpha)=order of 
convergence.  

In cases where Î±=2 or 3 the sequence is said to have quadratic and cubic 
convergence respectively. However in linear cases i.e. when Î±=1, for the sequence 
to converge Î¼ must be in the interval (0,1). The theory behind this is that for 
En+1â‰¤Î¼En to converge the absolute errors must decrease with each 
approximation, and to guarantee this, we have to set 0<Î¼<1.  

In cases where Î±=1 and Î¼=1 and you know it converges (since Î¼=1 does not tell 
us if it converges or diverges) the sequence {xn} is said to converge sublinearly i.e. 
the order of convergence is less than one. If Î¼>1 then the sequence diverges. 
If Î¼=0 then it is said to converge superlinearly i.e. it‘s order of convergence is higher 
than 1, in these cases you change Î± to a higher value to find what the order of 
convergence is. In cases where Î¼ is negative, the iteration diverges. 

 
 
 
 
 
 
 
 
 
 
 
 
 



UNIT-IV 
 
 
Interpolation and approximation 
 
Finite Differences 
 
The finite difference method (FDM) is an approximate method for solving partial 
differential equations. It has been used to solve a wide range of problems. These 
include linear and non-linear, time independent and dependent problems. This 
method can be applied to problems with different boundary shapes, different kinds 
of boundary conditions, and for a region containing a number of different materials. 
Even though the method was known by such workers as Gauss and Boltzmann, it 
was not widely used to solve engineering problems until the 1940s. The 
mathematical basis of the method was already known to Richardson in 1910 [1] 
and many mathematical books such as references [2 and 3] were published which 
discussed the finite difference method. Specific reference concerning the treatment 
of electric and magnetic field problems is made in [4]. The application of FDM is not 
difficult as it involves only simple arithmetic in the derivation of the discretization 
equations and in writing the corresponding programs. During 1950–1970 FDM was 
the most important numerical method used to solve practical problems ([5–7]). With 
the development of high speed computers having large scale storage capability 
many numerical solution techniques appeared for solving partial differential 
equations. However, due to the ease of application of the finite difference method it 
is still a valuable means of solving these problems 

Polynomial interpolation 

Here we shall work with polynomials. These are functions with the following 

form:f(x)=a0+a1x+⋯+anxn,where n is any nonnegative integer, a0,...,an are any 

fixed numbers, with an≠0. Here are some terminology related to polynomials: 

1. n is called the degree, 
 

2. a0,...,an are called the coefficients 
 

3. a0 is called the constant term 

Polynomials have many uses in mathematics. Here we shall learn about polynomial 

interpolation. The following example introduces this. 

EXAMPLE:  Suppose that f(x) is a polynomial of degree 2 
with f(1)=2, f(2)=5, and f(4)=2. Find the formula of f(x). 

SOLUTION: Since f(x) has degree 2, it must be of the formf(x)=a+bx+cx2,where the 

coefficient a,b,c are to be determined. Since f(1)=2,2=a+b×1+c×12=a+b+c.Similarly, 

we get two other equations:5=a+2b+4c2=a+4b+16cSolving all the three equations 

together we get a=−4,b=15/2,c=−3/2.  



In this example we say that f interpolates the three points(1,2),(2,5) and (4,2).We 

also call f an interpolating polynomial for this set of 3 points. 

Here we see that there is exactly one polynomial of degree 2 that interpolates these 

3 points. A polynomial of degree 2 has 2+1=3 unknown coefficients, a,b and c. We 

solved for these from the 3 equations. This can be generalized to the following 

result.TheoremSuppose that we 

have n+1 points:(x0,y0),(x1,y1),...,(xn,yn),where x0,...,xn are distinct numbers (no 

such condition on the yi's). Then there is exactly one polynomial f of degree ≤n that 

interpolates these n+1 points, i.e.,f(xi)=yi for 0≤i≤n. 

Proof: The conditionsf(xi)=yi for 0≤i≤ncan be written as a linear system in terms of 
the coefficients of the polynomial:Vb=y,where b=(b0,b1,...,bn)′ is the vector of 
coefficients to be 

determined, y=(y0,...,yn) andV=[1x0x20⋯xn01x1x21⋯xn1⋮⋮⋮⋮⋮1xnx2n⋯xnn].One may 
check by induction that V has determinant|V|=∏i>j(xi−xj).Since the xi's are all 
distinct, this implies that V is nonsingular, completing the proof. By the way, V is an 
important matrix that is useful elsewhere also. It is called a Vandermonde 
matrix. [QED] 

In this page we shall learn to solve the following problem: 

Given (n+1) points (x0,y0),...,(xn,yn), how to find the unique interpolating 

polynomial f(x) with degree ≤n? 

We shall always assume that the xi's are distinct. (Why is this a natural assumption?) 

One possible way is to imitate the proof of the above theorem, and solve a linear 

system of n+1 equations in n+1 unknowns. But this is not efficient, because it fails to 

take into account the Vandermonde structure of the coefficient matrix. We shall now 

learn some simpler ways of finding f(x). 

Lagrange's formula 

Lagrange devised a technique by which one may immediately write down the 

interpolating polynomial. We shall explore his intuitive approach through a few 

examples. 

EXAMPLE: Can you quickly write down a nonzero polynomial that vanishes 
at 1, 3 and 100? 

SOLUTION: Typically the simplest answer to flash across our minds, 

is (x−1)(x−3)(x−100). You can also multiply this with any other polynomial to get 

another answer. Indeed, all answers may be obtained in this way. 

Lagrange started with this simple idea, and extended it to the following problem. 

EXAMPLE: Same problem as before, but now with the two extra conditions: f must 
have degree ≤3 and also f(50)=1. 



SOLUTION: Since we still need f to vanish at 1, 3 and 100, we must start building 

from (x−1)(x−3)(x−100). This already has degree 3. So no further growth is allowed. 

We can only multiply it with some constant. At x=50 this has 

value (50−1)(50−3)(50−100). To bring it down to 1, we have to divide it by this to get 

the unique answer:f(x)=(x−1)(x−3)(x−100)(50−1)(50−3)(50−100). 

 

This motivates the definition of Lagrangian polynomial s. If x0,...,xn are 

any n+1 distinct numbers, then for i=0,1,...,n, the i-th Lagrangian polynomial is 

defined 

asLi(x)=(x−x0)×⋯×(x−xi−1)×(x−xi+1)×⋯×(x−xn)(xi−x0)×⋯×(xi−xi−1)×(xi−xi+1)×⋯×(x

−xn). 

Here the numerator is the product of all terms of the form (x−xj) for j≠i. The 

denominator is the same as the numerator, except that x is replaced by xi. 

EXERCISE:  Show that Li(x) is the unique ≤n degree polynomial 
with Li(xi)=1 and Li(xj)=0 for all j≠i.  

Let us compute the Li's explicitly in an example. 

EXAMPLE:  Consider the following xi's: x0=1, x1=3 and x2=−2. Find the Lagrangian 
polynomials. 

SOLUTION: HereL0(x)=(x−3)×(x−(−2))(1−3)×(1−(−2))=(6+x−x2)/6. 

Similarly, check thatL1(x)=(x2+x−2)/10, 

andL2(x)=(x2−4x+3)/15. 

Observe that this example does not mention the yi's at all, since they are not 

required to compute the Li's.  

Lagrange's interpolationConsider the original problem of 

interpolating (x0,y0),...,(xn,yn). The unique interpolating polynomial of degree ≤n is 

given byf(x)=y0L0(x)+y1L1(x)+⋯+ynLn(x). 

This is called the Lagrangian interpolating polynomial. 

Proof: It is easy to see why this f(x) answers our need. 
At x=xif(xi)=y0L0(xi)+y1L1(xi)+⋯+ynLn(xi)=y0×0+y1×0+⋯+yi×1+⋯+yn×0=yi 

[QED] 

EXAMPLE:  Let us apply Lagrange interpolation to the following table: 

i xi yi 
0  1  12 
1  3  10 
2 -2 -15 



We have already computed the polynomials L0,L1 and L2. So the unique degree 3 

interpolating polynomial 

isf(x)=y0L0(x)+y1L1(x)+y2L2(x)=12(6+x−x2)/6+10(x2+x−2)/10−15(x2−4x+3)/15=−2x

2+7x+7. 

 

EXERCISE:  Find the interpolating polynomial for the following points using 
Lagrange's method. 

i xi   yi 
0  1   0 
1  3  -1 
2 -2   3 
3  0 100 
 

EXAMPLE:  Show thatL0(x)+L1(x)+⋯+Ln(x)=1. 

Let f(x) denote the left hand side. Notice that it is the Lagrangian interpolating 

polynomial ify0=y1=⋯=yn=1. 

Thus f(x) is a polynomial of degree ≤n interpolating the (n+1) points(x0,1),...,(xn,1). 

Now consider the constant polynomialg(x)≡1. 

It is a polynomial of degree ≤n that interpolates the same (n+1) points. 

Since there is exactly one polynomial of degree ≤n interpolating (n+1) given points, 

we must havef(x)=g(x), 

that is,L0(x)+L1(x)+⋯+Ln(x)=1. 

 

Newton's divided difference method 

Lagrange's method is one way to compute the interpolating polynomial for a given 

set of points. Here is another method called Newton's divided difference method. 

Remember that there is exactly one polynomial of degree ≤n interpolating n+1 given 

points. So whether we use Lagrange's method or Newton's method we shall always 

come to the same answer. Only the way we compute it will be different, not the final 

answer. 

As before we are working with the points (x0,y0),...,(xn,yn), where all the xi's are 

distinct. We want to find the unique interpolating polynomial, f(x), of degree ≤n. Thus, 

we have thatf(xi)=yi for 0≤i≤n. 

We define the divided differences of f as follows. 

1. 0-th order divided difference:f[x0]=f(x0) 
 



2. 1-st order divided difference:f[x1,x0]=f[x1]−f[x0]x1−x0 
 

3. 2-nd order divided difference:f[x2,x1,x0]=f[x2,x1]−f[x1,x0]x2−x0 
 

4. 3-rd order divided difference:f[x3,x2,x1,x0]=f[x3,x2,x1]−f[x2,x1,x0]x3−x0 

In general, for 1≤k≤n, we have th k-th order divided 

difference:f[xk,xk−1,…,,x1,x0]=f[xk,…,x1]−f[xk−1,…,x0]xk−x0 

Notice the following points: 

1. The divided differences are computed step by step: the 0-th order divided 
differences are just the given f(xi)'s. The 1-st order divided differences are 
computed from the 0-th order divided differences. The 2-nd order is computed 
from the 1-st order, and so on. This step-by-step computation is best done in 
a tabular way, as we discuss below. 
 

2. To compute the divided differences we need only the value of f(xi)'s at the 
given xi's. So even without knowing the formula of f we can compute the 
divided differences. 
 

3. We are not assuming that the xi's are ordered. 

Divided difference table 

 

The following tabular format of the divided differences is called the divided 

difference table. Here we have shown it for n=2. 

x0   f[x0]            
              f[x1,x0] 
x1   f[x1]                  f[x2,x1,x0] 
              f[x2,x1]                   
x2   f[x2]                                  
We compute this table starting from the left and proceeding toward right. 

EXAMPLE:  Consider these values: 

xi  0 1   3   4 
yi -5 1 25 55  
Compute the divided difference table for it. 

SOLUTION: 

0  -5                            
          6                      
1   1           2       
         12         1              
3   25          6                  
         30                    
4   55                           
For instance, the 6 at the top of the 3rd column is obtained as6=1−(−5)1−0. 



The last 1 is computed as1=6−24−0. 

 

EXERCISE:  Compute the divided difference table for the following points. 

i     0   1     2   3   4 
xi    2   3    -2   1   0 
yi   22   -12   4   5   5 
 
 
 
Newton’s forward and backward formula 
 

Interpolation is the technique of estimating the value of a function for any 
intermediate value of the independent variable, while the process of computing the 
value of the function outside the given range is called extrapolation. 
Forward Differences : The differences y1 – y0, y2 – y1, y3 – y2, ……, yn – yn–1 
when denoted by dy0, dy1, dy2, ……, dyn–1 are respectively, called the first forward 
differences. Thus the first forward differences are : 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

NEWTON’S GREGORY FORWARD INTERPOLATION FORMULA : 

 
This formula is particularly useful for interpolating the values of f(x) near the beginning 
of the set of values given. h is called the interval of difference and u = ( x – a ) / h, 
Here a is first term. 

 

 

Example : 
Input : Value of Sin 52 

 

 

Output : 

 



 

Value at Sin 52 is 0.788003 
Below is the implementation of newton forward interpolation method. 

 C++ 

 Java 

 Python3 

 C# 

 PHP 
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// CPP Program to interpolate using   

// newton forward interpolation  

#include <bits/stdc++.h> 

usingnamespacestd;  

   

// calculating u mentioned in the formula  

floatu_cal(floatu, intn)  

{  



    floattemp = u;  

    for(inti = 1; i < n; i++)  

        temp = temp * (u - i);  

    returntemp;  

}  

   

// calculating factorial of given number n  

intfact(intn)  

{  

    intf = 1;  

    for(inti = 2; i <= n; i++)  

        f *= i;  

    returnf;  

}  

   

intmain()  

{  

    // Number of values given  

    intn = 4;  

    floatx[] = { 45, 50, 55, 60 };  

       

    // y[][] is used for difference table  

    // with y[][0] used for input  

    floaty[n][n];  

    y[0][0] = 0.7071;  

    y[1][0] = 0.7660;  

    y[2][0] = 0.8192;  

    y[3][0] = 0.8660;  

   

    // Calculating the forward difference  



    // table  

    for(inti = 1; i < n; i++) {  

        for(intj = 0; j < n - i; j++)  

            y[j][i] = y[j + 1][i - 1] - y[j][i - 1];  

    }  

   

    // Displaying the forward difference table  

    for(inti = 0; i < n; i++) {  

        cout << setw(4) << x[i]   

             << "\t";  

        for(intj = 0; j < n - i; j++)  

            cout << setw(4) << y[i][j]   

                 << "\t";  

        cout << endl;  

    }  

   

    // Value to interpolate at  

    floatvalue = 52;  

   

    // initializing u and sum  

    floatsum = y[0][0];  

    floatu = (value - x[0]) / (x[1] - x[0]);  

    for(inti = 1; i < n; i++) {  

        sum = sum + (u_cal(u, i) * y[0][i]) /  

                                 fact(i);  

    }  

   

    cout << "\n Value at "<< value << " is "  

         << sum << endl;  

    return0;  



}  

 

Output: 

  45    0.7071    0.0589    -0.00569999    -0.000699997     

  50    0.766    0.0532    -0.00639999     

  55    0.8192    0.0468     

  60    0.866     

 

  Value at 52 is 0.788003 

 
Backward Differences :  
 
The differences y1 – y0, y2 – y1, ……, yn – yn–1 when denoted by dy1, dy2, ……, 
dyn, respectively, are called first backward difference. Thus the first backward 
differences are : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
NEWTON’S GREGORY BACKWARD INTERPOLATION FORMULA : 
 
This formula is useful when the value of f(x) is required near the end of the table. h is 
called the interval of difference and u = ( x – an ) / h, Here an is last term. 
Example : 
Input : Population in 1925 

 

Output : 

 

 
Value in 1925 is 96.8368 
 

Below is the implementation of newton backward interpolation method. 

 C++ 

 Java 



 C# 

 PHP 

filter_none 

edit 
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// CPP Program to interpolate using  

// newton backward interpolation  

#include <bits/stdc++.h> 

usingnamespacestd;  

   

// Calculation of u mentioned in formula  

floatu_cal(floatu, intn)  

{  

    floattemp = u;  

    for(inti = 1; i < n; i++)  

        temp = temp * (u + i);  

    returntemp;  

}  

   

// Calculating factorial of given n  

intfact(intn)  

{  

    intf = 1;  

    for(inti = 2; i <= n; i++)  

        f *= i;  

    returnf;  

}  

   

intmain()  

{  

    // number of values given  



    intn = 5;  

    floatx[] = { 1891, 1901, 1911,   

                  1921, 1931 };  

                     

    // y[][] is used for difference   

    // table and y[][0] used for input  

    floaty[n][n];  

    y[0][0] = 46;  

    y[1][0] = 66;  

    y[2][0] = 81;  

    y[3][0] = 93;  

    y[4][0] = 101;  

   

    // Calculating the backward difference table  

    for(inti = 1; i < n; i++) {  

        for(intj = n - 1; j >= i; j--)  

            y[j][i] = y[j][i - 1] - y[j - 1][i - 1];  

    }  

   

    // Displaying the backward difference table  

    for(inti = 0; i < n; i++) {  

        for(intj = 0; j <= i; j++)  

            cout << setw(4) << y[i][j]   

                 << "\t";  

        cout << endl;  

    }  

   

    // Value to interpolate at  

    floatvalue = 1925;  

   



    // Initializing u and sum  

    floatsum = y[n - 1][0];  

    floatu = (value - x[n - 1]) / (x[1] - x[0]);  

    for(inti = 1; i < n; i++) {  

        sum = sum + (u_cal(u, i) * y[n - 1][i]) /  

                                     fact(i);  

    }  

   

    cout << "\n Value at "<< value << " is "  

         << sum << endl;  

    return0;  

}  

 

Output: 

  46     

  66      20     

  81      15      -5     

  93      12      -3       2     

 101       8      -4      -1      -3     

 

 Value at 1925 is 96.8368 

 
This article is contributed by Shubham Rana. If you like GeeksforGeeks and would 
like to contribute, you can also write an article using contribute.geeksforgeeks.org or 
mail your article to contribute@geeksforgeeks.org. See your article appearing on the 
GeeksforGeeks main page and help other Geeks. 
Please write comments if you find anything incorrect, or you want to share more 
information about the topic discussed above. 

Attention reader! Don‘t stop learning now. Get hold of all the important DSA concepts 
with the DSA Self Paced Course at a student-friendly price and become industry 
ready. 
 
CENTRAL DIFFERENCE FORMULA 
 
Consider a function f(x) tabulated for equally spaced points x0, x1, x2, . . ., xn with 
step length h. In many problems one may be interested to know the behaviour 
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of f(x) in the neighbourhood of xr (x0 + rh). If we take the transformation X = (x - 
(x0 + rh)) / h,  the data points for X and f(X) can be written as  

 

x X f(X) 
  x0 + (r - 2)h -2 f-2 
  x0 + (r -1)h -1 f-1 
  x0 + rh 0 f0 
  x0 + (r + 1)h 1 f1 
  x0 + (r + 2)h 2 f2 

 
 
now the central difference table can be generated using the definition of central 
differences: 

  f(X + h/2) - f(X - h/2) 

i =  (E1/2 - E-1/2)fi  = ( fi +1/2 - fi -1/2) 

2fi =  (E1/2 - E-1/2) ( fi +1/2 - fi -1/2) 

=  f1 - f0 - f0 + f-1   =  f1 - 2f0 + f-1 

  
Now the central difference table is 

Xi   fi i 
2fi 

3fi 
4fi 

      

-2   f-2         

    -3/2 
( = f-1 - f-2) 

      

-1   f-1   

2f-1 
( = -1/2- -

3/2) 
    

    -1/2 
( = f0 - f-1) 

  

3f-1/2 
( = 2f0 - 

2f-

1) 
  

0  f0   

2f0 
( = 1/2- -

1/2) 
  

4f0 
( = 3f1/2 -

3f-1/2) 

    1/2 
( = f1 - f0) 

  

3f1/2 
( = 2f1 -

 2f0) 
  

1  f1   

2f1 
( = 3/2-

1/2) 
    

    3/2 
( = f2 - f1) 

      

2  f2         
      

 

Gauss and Stirling formulae : 



Consider the central difference table interms of forward difference operator  and 
with Sheppard's Zigzag rule 

 

-3  f-3             
    -3           

-2  f-2   2f-3         
    -2   3f-3       

-1  f-1   2f-2   4f-3     
    -1   3f-2   5f-3   

 
 

0  f0   2f-1   4f-2   6f-3 

 
 

    0   3f-1   5f-2   
1  f1   2f0   4f-1     

    1   3f0       
2  f2   2f1         

    2           
3  f3             

                
Now by divided difference formula along the solid line interms of forward difference 
operator 
(f[x0, x1 . . . xr]

 = rfx / r!)   is 

f(x) = f0+ 

0+ 

 x(x-
1)  2f0+ 

x(x-
1)(x+1) 3f0+ 

 x(x-
1)(x+1)(x-2) 4f0+ 

 x(x-1)(x+1)(x-
2)(x+2) 5f0 

+ . . 
. 

2! 3! 4! 5! 
or 

f(x) = f0  + ( 
x 

) 0  + ( 
x 

) 2f-1 + ( 
x+1 

) 3f-1 + ( 
x+1 

) 4f-1 + ( 
x+2 

) 5f-2   + . . . 
1 2 3 4 5 

is called the Gauss forward difference formula. 

Now if we repeat the same along dotted line weget 

f(x) = f0  + ( 
x 

) -1  + ( 
x+1 

) 2f-1 + ( 
x+1 

) 3f-2 + ( 
x+2 

) 4f-2    + . . . 
1 2 3 4 

is called the Gauss backward difference formula. 

Now changing these two formulae to  notation produces respectively 

f(x) = f0  + ( 
x 

) 1/2  + ( 
x 

) 2f0 + ( 
x+1 

) 3f1/2 + ( 
x+1 

) 4f0    + . . . 
1 2 3 4 

 
  

f(x) = f0  + ( 
x 

) -1/2  + ( 
x+1 

) 2f0 + ( 
x+1 

) 3f-1/2+ ( 
x+2 

) 4f0    + . . . 
1 2 3 4 

Now by adding these two expression and dividing by two gives 

f(x) = f0  + ( 
x 

) 0  + 
x 

( 
x 

) 2f0 + ( 
x+1 

) 3f0+ 
x 

( 
x+1 

) 4f0    + . . . 
1 2 1 3 4 3 

or 

f(x) =  x  0  +   1    2f0 +   1    x(x2- 3f0+   1    x2(x2- 4f0    + . . 



f0  +  1! 2! x2 3! 12) 4! 12) . 
where the averaging operator  is defined as 

  =  
 f(x + h) - f(x - h)  

2 
This formula is called the Stirling's interpolation formula. 

Example : 

Using Stirling's formula compute f(12.2) from the data 

x f(x) X 
10 0.23967 -2 
11 0.28060 -1 
12 0.31788 0 
13 0.35209 1 
14 0.38368 2 

 
  
  

X   fx = 105f(x) x 
2fx 

3fx 
4fx 

      

-2   23967         
    4093       

-1   28060   -365     
    3728   58   
0 31788   -307   -13 
    3421   45   
1 35209   -262     
    3159       
2 38368         

      

 
  

f0.2 = f0  + ( 
x 

) 0  + 
x 

( 
x 

) 2f0 + ( 
x+1 

) 3f0+ 
x 

( 
x+1 

) 4f0  1 2 1 3 4 3 
 
  

 
 

3728 + 
3421  +  

0.2 0.2 (-
307) 

 +  
(1.2)(0.2)(-

0.8) 
58 + 
45  +  

0.2  
1.2  0.2  (-

0.8) 
(-

13) 
2 2 3! 2 4 3! 

= 31788 + 714.9 - 6.14 - 1.648 + 0.208 

= 32495 
-5fx = 0.32495 

 

Advantages : 

 

1. Stirling's formula decrease much more rapidly than other difference 
formulae hence considering first few number of terms itself will give 
better accuracy. 
 



2. Forward or backward difference formulae use the oneside information 
of the function where as Stirling's formula uses the function values on 
both sides of f(x). 

Bessel formula : 

Combining the Gauss forward formula with Gauss Backward formula based on a 
zigzag line just one unit below the earlier one gives the Bessel formula. This is 
equivalent to 

f(x) = f1  + ( 
x-1 

) 1/2  + ( 
x 

) 2f1 + ( 
x 

) 3f1/2 + ( 
x+1 

) 4f1 + ( 
x+1 

) 5f1/2   + . . . 
1 2 3 4 5 

Then the Bessel formula is 

f(x) 
= 1/2+ 

(x-
1/2) 1/2+ ( 

x 
) 2f1/2+ 

(1/3)(x-
1/2)( 

x 
) 3f1/2+ ( 

x+1 
) 4f1/2 

+(1/5)(x-
1/2)( 

x+1 
) 5f1/2 +... 

2 2 4 4 
set x = z + 1/2 

fz+1/2 1/2+ z 1/2+ 
z2-
1/4  

 1  
2f1/2+ 

z(z2-
1/4) 

 1  
3f1/2+ 

(z2-
1/4)(z2-
9/4) 

 1  
4f1/2 

+z(z2-
1/4)(z2-
9/4) 

 1  
5f1/2 +... 

2! 3! 4! 5! 

for z = 0 we have 

f1/2  =  1/2 -
  

 1  2f1/2 +  
  3  4f1/2. . 

.  8 128 
Now by choosing proper choise of origin x, one can take the central difference 
formula in the range 
0 < x < 1 or in -1/2 < x < 1/2. 

Example : 

Compute 344.51/3 for the equation f(x) = x1/3 

x ux = 105f(x) x 
2ux 

  
   

342 6993191     
    6809   

343 7000000   -13 
    6796   

344 7006796   -13 
    6783   

345 7013579   -13 
    6770   

346 7020349   -13 
    6757   

347 7027106     
 
  

u1/2 =  
14020375 

 -  
 1  

(-13)  =  7010189 
2 8 

 

 
Gauss’s Forward Method: 
 



The gaussian interpolation comes under the Central Difference Interpolation 
Formulae. Suppose we are given the following value of y=f(x) for a set values of x: 
 
X: x0 x1 x2 ………. xn 
Y: y0 y1 y2 ………… yn 
The differences y1 – y0, y2 – y1, y3 – y2, ……, yn – yn–1 when denoted by Δy0, Δy1, 
Δy2, ……, Δyn–1 are respectively, called the first forward differences. Thus the first 
forward differences are : 
 
Δy0 = y1 – y0 
 
and in the same way we can calculate higher order differences. 



 

And after the creating table we calculate the value on the basis of following formula: 



 

 

 

Now, Let‘s take an example and solve it for better understanding. 
 
Problem: 
 
From the following table, find the value of e1.17 using Gauss‘s Forward formula. 
 

x 1.00 1.05 1.10 1.15 1.20 1.25 1.30 

ex 2.7183 2.8577 3.0042 3.1582 3.3201 3.4903 3.6693 

 
Solution: 
 
We have 
 
yp = y0 + pΔy0 + (p(p-1)/2!).Δy2

0 + ((p+1)p(p-1)/3!).Δy3
0 + … 

where p = (x1.17 – x1.15) / h 
and h = x1 – x0 = 0.05 
so, p = 0.04 
Now, we need to calculate Δy0, Δy2

0, Δy3
0 … etc. 



 
 
Put the required values in the formula- 
yx = 1.17 = 3.158 + (2/5)(0.162) + (2/5)(2/5 – 1)/2.(0.008) … 
yx = 1.17 = 3.2246 
 
 
Code : Python code for implementing Gauss’s Forward Formula 
 

filter_none 

edit 
play_arrow 
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# Python3 code for Gauss's Forward Formula  

# importing library  

importnumpy as np  

   



# function for calculating coefficient of Y   

defp_cal(p, n):   

   

    temp =p;   

    fori inrange(1, n):   

         if(i%2==1):  

             temp *(p -i)  

         else:  

             temp *(p +i)  

    returntemp;   

# function for factorial  

deffact(n):   

    f =1  

    fori inrange(2, n +1):   

        f *=i  

    returnf   

   

# storing available data  

n =7;   

x =[ 1, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30];   

   

y =[[0fori inrange(n)]   

        forj inrange(n)];   

y[0][0] =2.7183;   

y[1][0] =2.8577;   

y[2][0] =3.0042;  

y[3][0] =3.1582;    

y[4][0] =3.3201;   

y[5][0] =3.4903;   

y[6][0] =3.6693;   



   

# Genrating Gauss's triangle  

fori inrange(1, n):   

    forj inrange(n -i):   

        y[j][i] =np.round((y[j +1][i -1] -y[j][i -1]),4);   

   

# Printing the Triangle   

fori inrange(n):   

    print(x[i], end ="\t");   

    forj inrange(n -i):   

        print(y[i][j], end ="\t");   

    print("");   

   

# Value of Y need to predict on   

value =1.17;   

   

# implementing Formula  

sum=y[int(n/2)][0];   

p =(value -x[int(n/2)]) /(x[1] -x[0])  

   

fori inrange(1,n):   

    # print(y[int((n-i)/2)][i])  

    sum=sum+(p_cal(p, i) *y[int((n-i)/2)][i]) /fact(i)  

   

print("\nValue at", value,   

    "is", round(sum, 4));   

Output : 
1       2.7183  0.1394  0.0071  0.0004  0.0     0.0     0.0001   

1.05    2.8577  0.1465  0.0075  0.0004  0.0     0.0001   

1.1     3.0042  0.154   0.0079  0.0004  0.0001   

1.15    3.1582  0.1619  0.0083  0.0005   



1.2     3.3201  0.1702  0.0088   

1.25    3.4903  0.179    

1.3     3.6693   

 

Value at 1.17 is 3.2246 

 
Attention geek! Strengthen your foundations with the Python Programming 
Foundation Course and learn the basics. 
 
To begin with, your interview preparations Enhance your Data Structures concepts 
with the Python DS Course. 
 
Stirling’s 
 
Stirling’s formula, also called Stirling’s approximation, in analysis, a method for 
approximating the value of large factorials (written n!; e.g., 4! = 1 × 2 × 3 × 4 = 24) 
that uses the mathematical constants e (the base of the natural logarithm) and π. 

The formula is given by  

The Scottish mathematician James Stirling published his formula in Methodus 
Differentialis sive Tractatus de Summatione et Interpolatione Serierum 
Infinitarum (1730; ―Differential Method with a Tract on Summation and Interpolation 
of Infinite Series‖), a treatise on infinite series, summation, interpolation, and 
quadrature. 

For practical computations, Stirling‘s approximation, which can be obtained from his 

formula, is more useful: lnn! ≅ nlnn − n, where ln is the natural logarithm. Using 
existing logarithm tables, this form greatly facilitated the solution of otherwise tedious 
computations in astronomy and navigation. 

William L. Hosch 
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analysis 

Analysis, a branch of mathematics that deals with continuous change and with 

certain general types of processes that have emerged from the study of continuous 

change, such as limits, differentiation, and integration. Since the discovery of the 

differential and integral calculus by Isaac Newton and Gottfried Wilhelm Leibniz at 

the… 

factorial 

Factorial, in mathematics, the product of all positive integers less than or equal to a 

given positive integer and denoted by that integer and an exclamation point. Thus, 

factorial seven is written 7!, meaning 1 × 2 × 3 × 4 × 5 × 6 × 7. Factorial zero is… 

Bessel functions, first defined by the mathematician Daniel Bernoulli and then 

generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential 

equation 

{\displaystyle x^{2}{\frac {d^{2}y}{dx^{2}}}+x{\frac {dy}{dx}}+\left(x^{2}-\alpha 

^{2}\right)y=0}for an arbitrary complex number α, the order of the Bessel function. 

Although α and −α produce the same differential equation, it is conventional to define 

different Bessel functions for these two values in such a way that the Bessel 

functions are mostly smooth functions of α. 

The most important cases are when α is an integer or half-integer. Bessel functions 

for integer α are also known as cylinder functions or the cylindrical 

harmonics because they appear in the solution to Laplace's equation in cylindrical 

coordinates. Spherical Bessel functions with half-integer α are obtained when 

the Helmholtz equation is solved in spherical coordinates. 

 

Bessel functions of the first kind: Jα 

Bessel functions of the first kind, denoted as Jα(x), are solutions of Bessel's 
differential equation that are finite at the origin (x = 0) for integer or positive α and 
diverge as x approaches zero for negative non-integer α. It is possible to define the 
function by its series expansion around x = 0, which can be found by applying 
the Frobenius method to Bessel's equation:[3] 

 

where Γ(z) is the gamma function, a shifted generalization of the factorial function to 
non-integer values. The Bessel function of the first kind is an entire function if α is an 
integer, otherwise it is a multivalued function with singularity at zero. The graphs of 
Bessel functions look roughly like oscillating sine or cosine functions that decay 
proportionally to  (see also their asymptotic forms below), although their roots are not 
generally periodic, except asymptotically for large x. (The series indicates 
that −J1(x) is the derivative of J0(x), much like −sin x is the derivative of cos x; more 

https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/factorial
https://www.britannica.com/science/factorial
https://www.britannica.com/science/factorial
https://www.britannica.com/science/factorial
https://en.wikipedia.org/wiki/Daniel_Bernoulli
https://en.wikipedia.org/wiki/Friedrich_Bessel
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Half-integer
https://en.wikipedia.org/wiki/Cylindrical_harmonics
https://en.wikipedia.org/wiki/Cylindrical_harmonics
https://en.wikipedia.org/wiki/Laplace%27s_equation
https://en.wikipedia.org/wiki/Cylindrical_coordinates
https://en.wikipedia.org/wiki/Cylindrical_coordinates
https://en.wikipedia.org/wiki/Spherical_Bessel_functions
https://en.wikipedia.org/wiki/Helmholtz_equation
https://en.wikipedia.org/wiki/Spherical_coordinates
https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Frobenius_method
https://en.wikipedia.org/wiki/Bessel_function#cite_note-p360-3
https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Factorial
https://en.wikipedia.org/wiki/Entire_function
https://en.wikipedia.org/wiki/Multivalued_function


generally, the derivative of Jn(x) can be expressed in terms of Jn ± 1(x) by the 
identities below.) 

 

 

Plot of Bessel function of the first kind, Jα(x), for integer orders α = 0, 1, 2 

For non-integer α, the functions Jα(x) and J−α(x) are linearly independent, and are 
therefore the two solutions of the differential equation. On the other hand, for integer 
order n, the following relationship is valid (the gamma function has simple poles at 
each of the non-positive integers):[4] 

 

This means that the two solutions are no longer linearly independent. In this case, 
the second linearly independent solution is then found to be the Bessel function of 
the second kind, as discussed below. 

Bessel's integrals[edit] 

Another definition of the Bessel function, for integer values of n, is possible using an 
integral representation:[5] 

 

Another integral representation is:[5] 

 

This was the approach that Bessel used, and from this definition he derived several 
properties of the function. The definition may be extended to non-integer orders by 
one of Schläfli's integrals, for Re(x) > 0. 
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Everett’s formula 

It is well known [1], [2], [6], [7], [8], [9], that it is possible in the case of univariate 
tables for use with Everett's formula, to eliminate columns of higher order differences 
with practically no loss of accuracy by modification of one or more lower order 
differences through a process known as throwback. That the same thing is possible 
with bivariate tables (and, presumably, with other multivariate tables) seems not to 
have been recorded in print. Everett's formula for bivariate interpolation, as far as 
fourth order differences, can be written as follows, using symbolism similar to that of 
[2] (see also [3] 
 
Interpolation with unequal intervals 
 
Langrange’s Interpolation  
 
This is again an Nth degree polynomial approximation formula to the function f(x), 
which is known at discrete points xi, i = 0, 1, 2 . . . Nth. The formula can be derived 
from the Vandermonds determinant but a much simpler way of deriving this is from 
Newton's divided difference formula. If f(x) is approximated with an Nth degree 
polynomial then the Nth divided difference of f(x) constant and (N+1)th divided 
difference is zero. That is 

f [x0, x1, . . . xn, x] = 0 
From the second property of divided difference we can write 

f0 

 +  

fn 
 

fx 

  =  
0 

  

+ . . . 
+  

 

(x0 - x1) . . . (x0 - xn)(x0 - 
x) 

(xn - x0) . . . (xn - xn-1)(xn - 
x) 

  
(x - x0) . . . (x - 

xn) 
or 

  (x - x1) . . . (x - xn)   (x - x0) .  .  . (x - xn-1)   
f(x)  =   f0  + .   .   . +   fn 
  (x0 - x1) . . . (x0 - xn)   (xn - x0) .  .  . (xn - xn-1)   

 
  

n 

( 

   n      

)fi 

  

 
|  |    x - xj   

j = 0   (xi - xj)  
i = 0  1     

 
 

Since Lagrange's interpolation is also an Nth degree polynomial approximation 
to f(x) and the Nth degree polynomial passing through (N+1) points is unique hence 
the Lagrange's and Newton's divided difference approximations are one and the 
same. However, Lagrange's formula is more convinent to use in computer 
programming and Newton's divided difference formula is more suited for hand 
calculations. 

Example : Compute f(0.3) for the data 

x 0 1 3 4 7 
f 1 3 49 129 813 



using Lagrange's interpolation formula (Analytic value is 1.831) 

 
  

  (x - x1) (x - x2)(x- x3)(x - x4)   (x - x0)(x - x1) (x - x2)(x - x3)   
f(x)  =   f0+ . . . +    f4 
  (x0 - x1) (x0 - x2)(x0 - x3)(x0 - x4)   (x4 - x0)(x4 - x1)(x4 - x2)(x4 - x3)    

 
  

  (0.3 - 1)(0.3 - 3)(0.3 - 4)(0.3 - 7)   (0.3 - 0)(0.3 - 3)(0.3 - 4)(0.3 - 7)   
       =    1+    3 +  
  (-1) (-3)(-4)(-7)   1 x (-2)(-3)(-6)    

 
   

(0.3 - 0)(0.3 - 1)(0.3 - 4)(0.3 - 7)   (0.3 - 0)(0.3 - 1)(0.3 - 3)(0.3 - 7)   
  49 +   129 +  

3 x 2 x (-1)(-4)   4 x 3 x 1 (-3)   
 
   

(0.3 - 0)(0.3 - 1)(0.3 - 3)(0.3 - 4)   
 813 

7 x 6 x 4 x 3   
         = 1.831 

 
 
NEWTON'S DIVIDED DIFFERENCE FORMULA 

 

Let us assume that the function f(x) is linear then 
we have 

f(xi) - f(xj)  
 

 (xi - xj)  
where xi and xj are any two tabular points, is independent of xi and xj. This ratio is 
called the first divided difference of f(x) relative to xi and xj and is denoted by f [xi, 
xj]. That is 

f [xi, xj] 
=  

f(xi) - f(xj)   =  f [xj, 
xi] 
 

(xi - xj) 
Since the ratio is independent of  xi and xj we can write   f [x0, x] = f [x0, x1] 

f(x) - f(x0)  
  

   =  f [x0, x1] 
(x - x0)  

  

f(x) = f(x0) + (x - x0) f [x0, x1] 

 

=  
1 

| 
f(x0) 

 x0 - 
x 
| 
 

f1 - f0  
f0x1 - f1x0 

 

  
 =   

 x 
+  

 



x - x0 f(x1) 
 x1 - 

x  
x1 - x0  

x1 - x0 

So if f(x) is approximated with a linear polynomial then the function value at any 
point x can be calculated by using f(x)  P1(x) = f(x0) + (x - x1) f [x0, x1] 

where f [x0, x1] is the first divided difference of  f  relative to x0 and x1. 

Similarly if f(x) is a second degree polynomial then the secant slope defined above is 
not constant but a linear function of x. Hence we have  

f [x1, x2] - f [x0, x1] 
 

x2 - x0 
is independent of x0, x1 and x2. This ratio is defined as second divided difference 
of f relative to x0, x1 and x2. The secind divided difference are denoted as  

  
f [x1, x2] - f [x0, x1] 

f [x0, x1, x2]   =   

  
 

x2 - x0 
Now again since f [x0, x1,x2] is independent of x0, x1 and x2 we have 

f [x1, x0, x] = f [x0, x1, x2] 
f [x0, x] - f [x1, x0]  

  
   =  f [x0, x1, x2] 

x - x1  
  

f [x0, x] = f [x0, x1] + (x - x1) f [x0, x1, x2] 

 

f [x] - f [x0]  
  

 

  
=  

f [x0, x1] + (x - x1) f [x0, x1, 
x2] 

x - x0  
  

f(x) = f [x0] + (x - x0) f [x0, x1] + (x - x0) (x - x1) f [x0, x1, x2] 

This is equivalent to the second degree polynomial approximation passing through 
three data points 

x0 x1 x2 
f0 f1 f2 

So whenever f(x) is approximated with a second degree polynomial, the value 
of f(x) at any point x can be computed using the above polynomial. 
In the same way if we define recursively kth divided difference by the relation 

  
f [x1, x2, . . ., xk] - f [x0, x1, . . ., xk-

1] 
f [x0, x1, . . ., 
xk] 

  
=  

 

  
 

xk - x0 
The kth degree polynomial approximation to f(x) can be written as 

f(x) = f [x0] + (x - x0) f [x0, x1] + (x - x0) (x - x1) f [x0, x1, x2]  
                   + . . . + (x - x0) (x - x1) . . . (x - xk-1) f [x0, x1, . . ., xk]. 



This formula is called Newton's Divided Difference Formula. Once we have the 
divided differences of the function f relative to the tabular points then we can use the 
above formula to compute f(x) at any non tabular point. 

Computing divided differences using divided difference table:  Let us consider 
the points (x1, f1), (x2, f2), (x3, f3) and (x4, f4) where x1, x2, x3 and x4 are not 
necessarily equi-distant points then the divided difference table can be written as  

 

xi  fi f [xi, xj]  f [xi, xj, xk ]  f [xi, xj, xk, xl] 
     

x1  f1    

  
 

f 
[x

1, 
x2

] 
=  

f2 - f1 
 

x2 - x1 

 

  

x2  f2  
  

f [x2, x3] - f [x1, x2] 
f [x1, x2,x3]   =   

  
 

x3 - x1 
 

 

  
 

f 
[x

2, 
x3

] 
=  

f3 - f2 
 

x3 - x2 

 

 
  

f [x2, x3,x4] - f [x1, x2,x3] 
f [x1, x2,x3,x4]   =   

  
 

x4 - x1 
 

x3  f3  
  

f [x3, x4] - f [x2, x3] 
f [x2, x3,x4]   =   

  
 

x4 - x2 
 

 

  
 

f 
[x

3, 
x4

] 
=  

f4 - f3 
 

x4 - x3 

 

  

x4  f4    
 

Example : Compute f(0.3) for the data 

x 0 1 3 4 7 
f 1 3 49 129 813 

using Newton's divided difference formula. 

Solution : Divided difference table 

xi fi       
0 1       

    2     
1 3   7   

    23   3 
3 49   19   

    80   3 



4 129   37   
    228     

7 813     
 

Now Newton's divided difference formula is 

 
f(x) = f [x0] + (x - x0) f [x0, x1] + (x - x0) (x - x1) f [x0, x1, x2] +  (x - x0) (x - x1) (x - x2)f 
[x0, x1,  x2, x3] 

f(0.3) = 1 + (0.3 - 0) 2 + (0.3)(0.3 - 1) 7 + (0.3) (0.3 - 1) (0.3 - 3) 3 

         = 1.831 
  

Since the given data is for the polynomial f(x) = 3x3 - 5x2 + 4x +1 the analytical value 
is f(0.3) = 1.831 

The analytical value is matched with the computed value because the given data is 
for a third degree polynomial and there are five data points available using which one 
can approximate any data exactly upto fourth degree polynomial.  

Properties : 

1. If f(x) is a polynomial of degree N, then the Nth divided difference of f(x) is a 
constant. 

Proof : Consider the divided difference of xn 

  
(x1+ h)n - xn 

 
n h xn-1+ . . . 

n 
  
=  

 

  
=  

 

  
 

x + h - x 
 

h 

         =  a polynomial of degree (n - 1) 
  

Also since divided difference operator is a linear operator,  of any Nth degree 
polynomial is an (N-1)th degree polynomial and second  is an (N-2) degree 
polynomial, so on  the Nth divided difference of an Nth degree polynomial is a 
constant. 

2. If   x0, x1, x2 . . . xn are the (n+1) discrete points then the Nth divided difference is 
equal to  

 
f0  

fn 
f[x0, x1, x2 . . . xn] =     + . . . +   

 
(x0 - x1) . . . (x0 - xn) 

 
(xn - x0) . . . (xn - xn-1) 

Proof : If n = 0  f(x0) = f(x0) hence the result is true let us assume that the result is 
valid upto n = k 

 
f0  

fk 
f[x0, x1, . . . xk] 

=  
 

  + . . . 
+  

 

 
(x0 - x1) . . . (x0 - 

xk)  
(xk - x0) . . . (xk - xk-

1) 



Consider the case n = k + 1 

 
f[x1, x2, . . .  xk+1] - f[x0, x1, . . . xk] 

f[x0, x1, . . . xk, xk+1] =   

 
(xk+1 - x0) 

 
  

  1 

[ 

f1   fk+1 

] 
=    

  + . . . 
+  

 

  (xk+1 - x0) 
(x1 - x2) . . . (x1 - 

xk+1) 
  

(xk+1 - x1) . . . (xk+1 - 
xk) 

  
  1 

[ 
f0   fk 

]      + . . . +   

  (xk+1 - x0) (x0 - x1) . . . (x0 - xk)   (xk - x0) . . . (xk - xk-1) 
 
  
  f0 

 +  

f1 

( 

1 
 

1 

) 

  fk+1 

=     

 -
  

  +...+   

  
(x0-x1)...(x0-

xk+1) 
(x1-x2)...(x1 - 
xk)(xk+1 - x0) 

x1-xk+1  
x1-x0  

(xk+1-
x0)...(xk+1-xk) 

 
  
  
  f0 

 +  

f1  
fk+1 

=    

+ . . . 
+  

 

  
(x0 - x1) . . . (x0 - 

xk+1) 
(x1 - x0) (x1 - x2) . . . (x1 - 

xk+1) 
  

(xk+1 - x0) . . . (xk+1 - 
xk) 

3. Sheppard Zigzag rule : 

Consider the divided difference table for the data points (x0, f0), (x1, f1), (x2, 
f2) and (x3, f3) 

 
 

In the difference table the dotted line and the solid line give two differenct paths 
starting from the function values to the higher divided difference's posssible to the 
function values. The Sheppard's zigzag rule says the function value at any non-
tabulated from the dotted line or from the solid line are same provided the order 
of xi are taken in the direction of the zigzag line. That is any f(x) through the dotted 
line can be approximated as 

 



 
f(x) = f0 + (x - x0) f [x0, x1] + (x - x0) (x - x1) f [x0, x1,x2]  + (x - x0) (x - x1) (x - x2)f [x0, 
x1, x2, x3]. 
  

Similarly f(x) over the solid line is euivalent to 

 
f(x) = f2 + (x - x2) f [x1, x2] + (x - x2) (x - x1) f [x1, x2,x3]  + (x - x2) (x - x1) (x - x3)f [x0, 
x1, x2, x3]. 

Example : Find f(1.5) from the data points  
  

x 0 0.5 1 2 
f(x) 1 1.8987 3.7183 11.3891 

 

f(1.5) along the dotted line is  
f(1.5) = 1 + 1.5 x 1.7974 + 1.5 (1) x 1.8418 + (1.5) (1) (0.5) x 0.4229 
         = 6.770 

Similarly f(1.5) along the solid line is 
f(1.5) = 3.7183+(1.5 - 1)x3.6392+(1.5 - 1)(1.5 - 0.5)x2.6877+(1.5 -1)(1.5 - 0.5)(1.5 - 
2)x0.4229 
          = 6.770 

The data is given for f(x) = x2 + ex and the analytical value for f(1.5) = 6.7317 

Hermite’s Interpolation Approximation of function by Taylor’s series and 

Chebyshev polynomial 

 

If the first  derivatives of the function  are known as well as the function value at each 
of the  node points , i.e., we have available a set of  values , then the function can be 

interpolated by a polynomial of degree  

 
(46) 



In principle, the  coefficients  could be obtained by solving a linear equation system 

of the same number of equations: 

Example 

The Hermite interpolation is carried out to the same function  used in previous 
examples, with the result shown in the figure below, together with the basis 
polynomials . As the first order derivative  is available as well as the function 
value  at each node point , the interpolation  matches the given function  very well 
(almost identical on the plots), with an error , which is much reduced from  of all 

methods previously discussed based only on . 

 

The Matlab code that implements the Hermite interpolation method is listed below. 

function [H a b]=HIL(u,x,y,dy)  % Hermite interpolation (Lagrange) 
                         % u: discrete data points;  
                         % vector x: [x_1,...,x_n] 
                         % vector y: [y_1,...,y_n] 
                         % vector dy: [y'_1,...,y'_n] 
   n=length(x);          % number of interpolating points 
   k=length(u);          % number of discrete data points 
   li=ones(n,k);         % Lagrange basis polynomials 
   a=zeros(n,k);         % basis polynomials alpha(x) 



   b=zeros(n,k);         % basis polynomials beta(x)     
   H=zeros(1,k);         % Hermie interpolation polynomial H(x) 
   for i=1:n        
       dl=0;             % derivative of Lagrange basis 
       for j=1:n     
           if j~=i 
               dl=dl+1/(x(i)-x(j)); 
               li(i,:)=li(i,:).*(u-x(j))/(x(i)-x(j));  
           end 
       end 
       l2=li(i,:).^2; 
       b(i,:)=(u-x(i)).*l2;           % basis polynomial alpha(x) 
       a(i,:)=(1-2*(u-x(i))*dl).*l2;  % basis polynomial beta(x) 
       H=H+a(i,:)*y(i)+b(i,:)*dy(i);  % Hermite polynomial H(x) 
   end    
end 

This function  with  sample points can then be interpolated by the Newton polynomial 
method. For example, if , then the Newton's polynomial of degree  can be found to 
be: 

It can be verified that indeed  for all  and . Similar to the Newton polynomial method 

discussed previously, the divided difference coefficients can be obtained recursively, 

with the only difference that there exist  repeated copies at each point , where the 

divided difference can be found by 

The divided difference coefficients in the expression of  above can be recursively 

generated in tabular form below, eventually appearing as the diagonal elements of 

the table. 

Example: 

The Hermite interpolation based Newton's polynomials is again carried out to the 
same function  used before. Now we assume both the first and second order 
derivatives and  are available as well as  at the  points. The resulting Hermite 
interpolation  is plotted together with  in the figure below. We see that they are 

almost identical, with an error . 



 

The Matlab code that implements this algorithm is listed below. 

function [v]=HIN(u,x,dy)         % Hermite interpolation (Newton) 
    % u: discrete data points;  
    % vector x: [x_1,...,x_n] 
    % matrix dy contains m derivatives at each of the n points  
    [n m]=size(dy);               
    k=length(u);                 % number of discrete data points 
    v=zeros(1,k);                % interpolation results     
    dd=DividedDifference2(x,dy); % get the divided difference array 
    w=ones(1,k);   
    for i=1:n 
        p=u-x(i); 
        for j=1:m 
            l=(i-1)*m+j;         % index of the coefficient  
            v=v+dd(l,l).*w;      % which is on the diagnal of array dd 
            w=w.*p; 
        end 
    end     
end 
 
function dd=DividedDifference2(x,dy)  % generate array of divided differences 
    [n m]=size(dy);              % n data points, m derivatives (0 to m-1) 
    dd=zeros(n*m);               % matrix of divided differences 



    z=zeros(1,n*m);  
    k=1; 
    for i=1:n                    % n data points 
        for j=1:m                % m derivatives (0 to m-1) at each point 
            k=(i-1)*m+j;         % row index 
            z(k)=x(i);       
            dd(k,1)=dy(i,1);     % 0th divided difference in first column 
            fprintf('%6.3f\t%6.3f\t',z(k),dd(k,1)); 
            for l=2:k            % column index for the remaining columns 
                %fprintf('(%f %f)\n',dd(k,l-1),dd(k-1,l-1)); 
                if dd(k,l-1)==dd(k-1,l-1)  % left and top-left neighbors are repeated 
                    dd(k,l)=dy(i,l)/factorial(l-1); 
                    fprintf('k=%d, l=%d\n',k,l); 
                    pause 
                else                        
                    dd(k,l)=(dd(k,l-1)-dd(k-1,l-1))/(z(k)-z(k-l+1)); 
                end 
                fprintf('%6.3f\t',dd(k,l)); 
            end 
            fprintf('\n'); 
        end 
    end 
end 

The array of divided differences generated by the function DividedDifference2 is 
given below, the elements along the diagonal are the coefficients in the Hermite 
polynomials. 

 
In some cases, in engineering or real world technical problems, we are not interested 
to find the exact solution of a problem. If we have a good enough approximation, we 
can consider that we‘ve found the solution of the problem. 

For example, if we want to compute the trigonometric function f(x)=sin(x) with a hand 
held calculator, we have two options: 

 use the actual trigonometric function sin(x), if the calculator has the function 
embedded (available if it‘s a scientific calculator) 

 use a polynomial as an approximation of the sin(x) function and compute the 
result with any calculator, or even by hand 

In general, any mathematical function f(x), with some constraints, can be 
approximated by a polynomial P(x): 

P(x)=a0+a1⋅x+a2⋅x2+…+an⋅xn 

Weierstrass approximation theorem 

First, let‘s put down what the theorem sounds like. After, we‘ll try to explain it a bit. 

Theorem: For a given function f(x), which is defined and continuous on the 
interval [a, b], there is always a polynomial P(x), also defined on the interval [a, b], 
with the property: 

|f(x)−P(x)|<ε 



for any x ∈ [a, b]. and a given ε > 0. 

 

Image: Polynomial approximation of a function f(x) 

The theorem says that for any function f(x), which is continuous and defined between 
the points a and b, there is always a polynomial P(x), which can approximate the 
function f(x) with a small error ε, in the same interval [a, b]. 
Taylor‘s polynomials 

Example: Let‘s approximate the function f(x)=sin(x) with a polynomial of order 3, 
around the point x0 = 0. Using the determined polynomial, approximate the value 
of sin(0.1). 
Explanation: ―around the point x0‖ means that f(n)(x0) = P(n)(x0), which means that the 
evaluation of the function and its derivatives in the point x0 is equal to the evaluation 
of the polynomial and its derivatives. 
Step 1. Write the polynomial of order 3. 

P(x)=a0+a1⋅x+a2⋅x2+a3⋅x3 

Step 2. Calculate the 3rd order derivatives of P(x). We need them in order to find out 
the values of the coefficients a0, a1, a2 and a3. 

P(x)P′(x)P′′(x)P′′′(x)=a0+a1x+a2x2+a3x3=a1+2a2x+3a3x2=2a2+6a3x=6a3 

Step 3. Calculate P(n)(x0). 
P(0)P′(0)P′′(0)P′′′(0)=a0=a1=2a2=6a3 

Step 4. Calculate the 3rd order derivatives of f(x). 
f(x)f′(x)f′′(x)f′′′(x)=sin(x)=cos(x)=−sin(x)=−cos(x) 

Step 5. Calculate f(n)(x0). 

https://x-engineer.org/wp-content/uploads/2019/12/Polynomial-approximation.png?9da70d&9da70d


f(0)f′(0)f′′(0)f′′′(0)=sin(0)=cos(0)=−sin(0)=−cos(0)=0=1=0=−1 

Step 6. Calculate the coefficients a0, a1, a2 and a3. 

\[ \begin{split} 
P(0)&=f(0) &\Rightarrow a_{0}&=0\\ 
P^{\prime}(0)&=f^{\prime}(0) &\Rightarrow a_{1}&=1\\ 
P^{\prime\prime}(0)&=f^{\prime\prime}(0) &\Rightarrow a_{2}&=0\\ 

Chebyshev Polynomial of the First Kind 

 

The Chebyshev polynomials of the first kind are a set of orthogonal 
polynomials defined as the solutions to the Chebyshev differential equation and 

denoted . They are used as an approximation to a least squares fit, and are a 

special case of the Gegenbauer polynomial with . They are also intimately 
connected with trigonometric multiple-angle formulas. The Chebyshev polynomials of 

the first kind are denoted , and are implemented in the Wolfram 

Language as ChebyshevT[n, x]. They are normalized such that . The first 

few polynomials are illustrated above for  and , 2, ..., 5. 

The Chebyshev polynomial of the first kind  can be defined by the contour 
integral 

 

(1) 

where the contour encloses the origin and is traversed in a counterclockwise 
direction (Arfken 1985, p. 416). 

The first few Chebyshev polynomials of the first kind are 
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(2) 

   

(3) 

  

 

(4) 

  

 

(5) 

  

 

(6) 

  

 

(7) 

  

 

(8) 

When ordered from smallest to largest powers, the triangle of nonzero coefficients is 

1; 1; , 2; , 4; 1, , 8; 5, , 16, ... (OEIS A008310). 

 

A beautiful plot can be obtained by plotting  radially, increasing the radius for 

each value of , and filling in the areas between the curves (Trott 1999, pp. 10 and 
84). 

The Chebyshev polynomials of the first kind are defined through the identity 

 

(9) 

https://oeis.org/A008310


The Chebyshev polynomials of the first kind can be obtained from the generating 
functions 

  

 

(10) 

 
 

 

(11) 

and 

  

 

(12) 

 
 

 

(13) 

for  and  (Beeler et al. 1972, Item 15). (A closely related generating 
function is the basis for the definition of Chebyshev polynomial of the second kind.) 

A direct representation is given by 

 

(14) 

The polynomials can also be defined in terms of the sums 

  

 

(15) 

 
 

 

(16) 

 
 

 

(17) 

where  is a binomial coefficient and  is the floor function, or the product 

 

(18) 

(Zwillinger 1995, p. 696). 

 also satisfy the curious determinant equation 
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(19) 

(Nash 1986). 

The Chebyshev polynomials of the first kind are a special case of the Jacobi 

polynomials  with , 

  

 

(20) 

 
 

 

(21) 

where  is a hypergeometric function (Koekoek and Swarttouw 1998). 

Zeros occur when 

 

(22) 

for , 2, ..., . Extrema occur for 

 

(23) 

where . At maximum, , and at minimum, . 

The Chebyshev polynomials are orthogonal polynomials with respect to 

the weighting function  

 

(24) 

where  is the Kronecker delta. Chebyshev polynomials of the first kind satisfy the 
additional discrete identity 
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(25) 

where  for , ...,  are the  zeros of . 

They also satisfy the recurrence relations 

   

(26) 

  

 

(27) 

for , as well as 

  

 

(28) 

 

 

 

(29) 

(Watkins and Zeitlin 1993; Rivlin 1990, p. 5). 

They have a complex integral representation 

 

(30) 

and a Rodrigues representation 

 

(31) 

Using a fast Fibonacci transform with multiplication law 

 

(32) 

gives 

 

(33) 

Using Gram-Schmidt orthonormalization in the range ( ,1) with weighting 

function  gives 

   

(34) 
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(35) 

 
 

 

(36) 

 
  

(37) 

  

 

(38) 

 
 

 

(39) 

 
 

 

(40) 

etc. Normalizing such that  gives the Chebyshev polynomials of the first kind. 

The Chebyshev polynomial of the first kind is related to the Bessel function of the 

first kind  and modified Bessel function of the first kind  by the relations 

 

(41) 

 

(42) 

Letting  allows the Chebyshev polynomials of the first kind to be written as 

   

(43) 

 
 

 

(44) 

The second linearly dependent solution to the transformed differential equation 

 

(45) 

is then given by 

   

(46) 

 
 

 

(47) 

which can also be written 
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(48) 

where  is a Chebyshev polynomial of the second kind. Note that  is 
therefore not a polynomial. 

The triangle of resultants  is given by , , , 

, , ... (OEIS A054375). 

 

The polynomials 

 

(49) 

of degree , the first few of which are 

   

(50) 

  

 

(51) 

  

 

(52) 

  

 

(53) 

  

 

(54) 

are the polynomials of degree  which stay closest to  in the interval . The 

maximum deviation is  at the  points where 

 

Unit-V 

Numerical Differentiation and Integration: 

https://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
https://mathworld.wolfram.com/Polynomial.html
https://mathworld.wolfram.com/Resultant.html
https://oeis.org/A054375
https://mathworld.wolfram.com/Polynomial.html
https://mathworld.wolfram.com/Polynomial.html


Introduction 

Differentiation and integration are basic mathematical operations with a wide range 

of applications in many areas of science. It is therefore important to have good 

methods to compute and manipulate derivatives and integrals. You probably learnt 

the basic rules of differentiation and integration in school — symbolic methods 

suitable for pencil-and-paper calculations. These are important, and most derivatives 

can be computed this way. Integration however, is different, and most integrals 

cannot be determined with symbolic methods like the ones you learnt in school. 

Another complication is the fact that in practical applications a function is only known 

at a few points. For example, we may measure the position of a car every minute via 

a GPS (Global Positioning System) unit, and we want to compute its speed. If the 

position is known as a continuous function of time, we can find the speed by 

differentiating this function. But when the position is only known at isolated times, 

this is not possible. The same applies to integrals. The solution, both when it comes 

to integrals that cannot be determined by the usual methods, and functions that are 

only known at isolated points, is to use approximate methods of differentiation and 

integration. In our context, these are going to be numerical methods. We are going to 

present a number of methods for doing numerical integration and differentiation, but 

more importantly, we are going to present a general strategy for deriving such 

methods. In this way you will not only have a number of methods available to you, 

but you will also be able to develop new methods, tailored to special situations that 

you may encounter. We use the same general strategy for deriving both numerical 

integration and numerical differentiation methods. The basic idea is to evaluate a 

function at a few points, find the polynomial that interpolates the function at these 

points, and use the derivative or integral of the polynomial as an approximation to 

the function. This technique also allows us to keep track of the so-called truncation 

error, the mathematical error committed by integrating or differentiating the 

polynomial instead of the function itself. However, when it comes to roundoff error, 

we have to treat differentiation and integration differently: Numerical integration is 

very insensitive to round-off errors, while numerical differentiation behaves in the 

opposite way; it is very sensitive to round-off errors. 11.1 A simple method for 

numerical differentiation We start by studying numerical differentiation. We first 

introduce the simplest method, derive its error, and its sensitivity to round-off errors. 

The procedure used here for deriving the method and analysing the error is used 

over again in later sections to derive and analyse additional methods. Let us first 

make it clear what numerical differentiation is. Problem 11.1 (Numerical 

differentiation). Let f be a given function that is only known at a number of isolated 

points. The problem of numerical differentiation is to compute an approximation to 

the derivative f 0 of f by suitable combinations of the known values of f . A typical 

example is that f is given by a computer program (more specifically a function, 

procedure or method, depending on you choice of programming language), and you 

can call the program with a floating-point argument x and receive back a floating-

point approximation of f (x). The challenge is to compute an approximation to f 0 (a) 

for some real number a when the only aid we have at our disposal is the program to 

compute values of f . 11.1.1 The basic idea Since we are going to compute 

derivatives, we must be clear about they are defined. Recall that f 0 (a) is defined by 



f 0 (a) = lim h→0 f (a +h)− f (a) h . (11.1) In the following we will assume that this limit 

exists; i.e., that f is differentiable. From (11.1) we immediately have a natural 

approximation to f 0 (a); we simply 228 pick a positive h and use the approximation f 

0 (a) ≈ f (a +h)− f (a) h . (11.2) Note that this corresponds to approximating f by the 

straight line p1 that interpolates f at a and a −h, and then using p 0 1 (a) as an 

approximation to f 0 (a). Observation 11.2. The derivative of f at a can be 

approximated by f 0 (a) ≈ f (a +h)− f (a) h . In a practical situation, the number a 

would be given, and we would have to locate the two nearest values a1 and a2 to 

the left and right of a such that f (a1) and f (a2) can be found. Then we would use the 

approximation f 0 (a) ≈ f (a2)− f (a1) a2 − a1 . In later sections, we will derive several 

formulas like (11.2). Which formula to use for a specific example, and exactly how to 

use it, will have to be decided in each case. Example 11.3. Let us test the 

approximation (11.2) for the function f (x) = sinx at a = 0.5 (using 64-bit floating-point 

numbers). In this case we have f 0 (x) = cosx so f 0 (a) = 0.87758256. This makes it 

is easy to check the accuracy. We try with a few values of h and find h ¡ f (a +h)− f 

(a) ¢±h E1(f ;a,h) 10−1 0.8521693479 2.5×10−2 10−2 0.8751708279 2.4×10−3 10−3 

0.8773427029 2.4×10−4 10−4 0.8775585892 2.4×10−5 10−5 0.8775801647 

2.4×10−6 10−6 0.8775823222 2.4×10−7 where E1(f ;a,h) = f (a)− ¡ f (a+h)− f (a) ¢±h. 

In other words, the approximation seems to improve with decreasing h, as expected. 

More precisely, when h is reduced by a factor of 10, the error is reduced by the same 

factor. 

Numerical Differentiation 

Numerical differentiation is the process of finding the numerical value of 
a derivative of a given function at a given point. In general, numerical differentiation 
is more difficult than numerical integration. This is because while numerical 
integration requires only good continuity properties of the function being integrated, 
numerical differentiation requires more complicated properties such as Lipschitz 
classes. Numerical differentiation is implemented as ND[f, x, x0, Scale -> scale] in 
the Wolfram Language package NumericalCalculus` . 

There are many applications where derivatives need to be computed numerically. 
The simplest approach simply uses the definition of the derivative 

 

for some small numerical value of . 

A Numerical Integration 

 

Numerical integration of the equations described in this chapter is required to 
generate simulations of material response to a given loading history. It is important to 
consider the techniques of numerical integration for reasons of computational 
economy and compatibility with structural mechanics codes in which the constitutive 
equations may be employed. 
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The MATMOD-4V-DISTORTION equations are numerically integrated using the 
Gear Method for stiff differential equations. Such methods are necessary because of 
the inherent mathematical stiffness of any unified model, including MATMOD. The 
stiffness of these equations arises from the coupling of nonelastic and elastic strains 
to calculate the total strain, and the fact that ɛ˙ is a strong function of σ. Analogous 
problems arise in integrating the structure evolution equations, adding to the difficulty 
of the integration. To attack these problems and to provide a better interface with 
existing finite-element structural mechanics codes, the NONSS (NONlinear System 
Solver) method was developed (Tanaka, 1983; Tanaka and Miller, 1988; Miller and 
Tanaka, 1988) and employed for integration of the three-dimensional MATMOD-
BSSOL equations (Henshall, 1987). 
 
Details of the methods used to integrate the MATMOD-4V-DISTORTION and 
MATMOD-BSSOL equations are provided elsewhere (Helling, 1986; Henshall, 
1987; Miller, 1987; Tanaka, 1983; Tanaka and Miller, 1988). The Fortran programs 
embodying these numerical integration schemes are available for both models 
through any of the authors. Recently, the NONSS method was incorporated into a 
finite-element code by Chellapandi and Alwar (1996). They used the 23-parameter 
Chaboche viscoplastic constitutive model and compared the computational efficiency 
of NONSS against their standard Self-Adaptive Forward Euler (SAFE) method. For 
their three most complicated cases including cyclic loading and behavior around 
notches, the ratios of computational time by SAFE to that using NONSS were 8.47, 
9.7, and 7.33, respectively. This indicates that considerable time can be saved in 
finite-element analyses involving advanced unified constitutive equations by 
employing numerical methods. 
 
Numerical integration procedures have been applied frequently in order to avoid 
some of the assumptions inherent in the above approximate treatments. Among the 
most straightforward of these is the method utilized in Nordheim's33 code ZUT, which 
calculates effective resonance integrals for isolated resonances in a two region 
lattice geometry. 
 
As discussed in connection with equation (22) in Section 3.1 the shielding function in 
the fuel f0(u) for an isolated resonance may be obtained by solving the integral 
equation for the collision density per unit energy ψ0(u) expressed as a function of 
lethargy. The loss of neutrons due to absorption is then accounted for by an 
exponential dependence of the slowing down density on the group resonance 
integral for absorption, equation (12). The function ψ0(u) is obtained by solving the 
first of the two integral equations shown in equation (36), to which the reciprocity 
relation, equation (41), is applied, giving 
 
(97)ψ0(u)=P0(u)∑iTiψ0+{1−P0(u)}×{Σt(u)}0(ΣB)1∑jTjψ1. 

The resonance integrals are then obtained from equation (26) as applied to the fuel, 
(98)(Ieffx)i=∫resσix(u){Σt(u)}0Eψ0(u)du. 

The ZUT code simplifies equation (97) by assuming that for slowing down by the 
moderator nuclides the NR approximation holds. As discussed in connection 
with equation (27), the equation then reduces to 
(99)ψ0(u)=P0(u)∑iTiψ0+{1−P0(u)}{Σt(u)}0/E 

https://www.sciencedirect.com/topics/engineering/energy-engineering


which is an integral equation for ψ0(u), the integral operators Ti being defined 
in equation (25). The ZUT program solves equation (99) by Simpson integrations 
over a fine lethargy mesh, which covers the central portion of each individual 
resonance, this lethargy range being defined to be five practical 
widths √(σto/σtp)Γ/E0,, or ten Doppler widths 2Δ/E0, whichever is the larger. The 
small wing corrections outside this range are added as unshielded unbroadened 
resonance integrals in a 1/E flux. The Simpson integration of equation (99), and 
subsequent trapezium integration of equation (98), start at the low lethargy limit of 
the central portion of the resonance, and proceed on a fine lethargy mesh, selected 
so that an integral number of mesh intervals cover the range of integration 
in equation (98). The masses of the nuclides i are adjusted slightly, as required, in 
order that an even number of mesh intervals cover the integration range 
in Tiψ0 of equation (99). Outside the central portion of the resonance ψ0(u) is 
assumed to have the asymptotic value (ΣB)0/E or (ΣB)0 e

u/E0. Consequently, the 
solution of equation (99) can proceed successively from mesh point to mesh point by 
Simpson integration, the value ψ0(u) at the next mesh point being the only unknown. 
The successive contributions to the integral in equation (98) are calculated as soon 
as the ψ0(u) becomes known at each new mesh point (see also Section 4.3). 
 

One-dimensional integration 
 

J.E. Akin, in Finite Element Analysis with Error Estimators, 2005 
 
4.4 Numerical integration 

 

Numerical integration is simply a procedure that approximates (usually) an integral 
by a summation. To review this subject we refer to Fig. 4.2. Recall that the integral 
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(4.8)I=∫abf(x)dx 

can be viewed graphically as the area between the x-axis and the curve y = f(x) in 
the region of the limits of integration. Thus, we can interpret numerical integration as 
an approximation of that area. The trapezoidal rule of numerical integration simply 
approximates the area by the sum of several equally spaced trapezoids under the 
curve between the limits of a and b. The height of a trapezoid is found from 
the integrand, yj = y(xj), evaluated at equally spaced points, xj and xj+1. Thus, a 
typical contribution is A = h(yj + yj+1)/2, where h = xj+1 − xj is the spacing. Thus, 
for nq points (and nq − 1 spaces), the well-known approximation is 
(4.9)I≈h(12y1+y2+y3+…+yn−1+12yn),I≈∑j=1nwjf(xj) 

where Wj = h, except w1 = wn = h/2. A geometrical interpretation of this is that the 
area under curve, I, is the sum of the products of certain heights, f(xj) times some 
corresponding widths, Wj. In the terminology of numerical integration, the locations 
of the points, xj, where the heights are computed are called abscissae and the 
widths, wj, are called weights. Another well-known approximation is the Simpson 
rule, which uses parabolic segments in the area approximation. For most functions 
the above rules may require 20 to 40 terms in the summation to yield acceptable 
accuracy. We want to carry out the summation with the minimum number of 
terms, nq, in order to reduce the computational cost. What is the minimum number of 
terms? The answer depends on the form of the integrand f (x). Since 
the parametric geometry usually involves polynomials we will consider that common 
special case for f (x). 

Table 4.1. Abscissas and weights for Gaussian  

quadrature ∫−1+1f(x)dx=∑i=1nqwif(xi) 

±xi 
 

Wi 

0.00000 00000 00000 00000 0000 nq = 
1 

2.00000 00000 00000 00000 000 

0.57735 02691 89625 76450 9149 nq = 
2 

1.00000 00000 00000 00000 000 

0.77459 66692 41483 37703 5835 nq = 
3 

0.55555 55555 55555 55555 556 

0.00000 00000 00000 00000 0000  0.88888 88888 88888 88888 889 

0.86113 63115 94052 57522 3946 nq = 
4 

0.34785 48451 37453 85737 306 

0.33998 10435 84856 26480 2666  0.65214 51548 62546 14262 694 

0.90617 98459 38663 99279 7627 nq = 
5 

0.23692 68850 56189 08751 426 
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0.53846 93101 05683 09103 6314  0.47862 86704 99366 46804 129 

0.00000 00000 00000 00000 0000  0.56888 88888 88888 88888 889 

0.93246 95142 03152 02781 2302 nq = 
6 

0.17132 44923 79170 34504 030 

0.66120 93864 66264 51366 1400  0.36076 15730 48138 60756 983 

0.23861 91860 83196 90863 0502  0.46791 39345 72691 04738 987 

0.94910 79123 42758 52452 6190 nq = 
7 

0.12948 49661 68869 69327 061 

0.74153 11855 99394 43986 3865  0.27970 53914 89276 66790 147 

0.40584 51513 77397 16690 6607  0.38183 00505 05118 94495 037 

0.00000 00000 00000 00000 0000  0.41795 91836 73469 38775 510 

Table 4.2. Unit abscissas and weights for Gaussian  

quadrature ∫01f(x)dx=∑i=1nqwif(xi) 

xi 
 

Wi 

0.50000 00000 00000 00000 000 nq = 
1 

1.00000 00000 00000 00000 000 

0.21132 48654 05187 11774 543 nq = 
2 

0.50000 00000 00000 00000 000 

0.78867 51345 94812 88225 457  0.50000 00000 00000 00000 000 

0.11270 16653 79258 31148 208 nq = 
3 

0.27777 77777 77777 77777 778 

0.50000 00000 00000 00000 000  0.44444 44444 44444 44444 444 

0.88729 83346 20741 68851 792  0.27777 77777 77777 77777 778 

0.06943 18442 02973 71238 803 nq = 
4 

0.17392 74225 68726 92868 653 

0.33000 94782 07571 86759 867  0.32607 25774 31273 07131 347 

0.66999 05217 92428 13240 133  0.32607 25774 31273 07131 347 

0.93056 81557 97026 28761 197  0.17392 74225 68726 92868 653 

0.04691 00770 30668 00360 119 nq = 
5 

0.11846 34425 28094 54375 713 

0.02307 65344 94715 84544 818  0.23931 43352 49683 23402 065 

0.50000 00000 00000 00000 000  0.28444 44444 44444 44444 444 

0.76923 46550 52841 54551 816  0.23931 43352 49683 23402 065 



0.95308 99229 69331 99639 881  0.11846 34425 28094 54375 713 

Sometimes it is desirable to have a numerical integration rule that specifically 
includes the two end points in the abscissae list when (n ≥ 2). The Lobatto rule is 
such an alternate choice. Its nq points will exactly integrate a polynomial of order 
(2n − 3) for nq > 2. Its data are included in Table 4.3. It is usually less accurate than 
the Gauss rule but it can be useful. Mathematical handbooks give tables of Gauss or 
Lobatto data for much higher values of nq. Some results of Gauss's work are outlined 
below. Let y denote f(x) in the integral to be computed. Define a change of variable 

 

Table 4.3. Abscissas and weight factors for Lobatto  

integration ∫−1+1f(x)dx≈∑i=1nqwif(xi) 

±xi 

 

Wi 

0.00000 00000 00000 nq = 1 2.00000 00000 00000 

1.00000 00000 00000 nq = 2 1.00000 00000 00000 

1.00000 00000 00000 nq = 3 0.33333 33333 33333 

0.00000 00000 00000  1.33333 33333 33333 

1.00000 00000 00000 nq = 4 0.16666 66666 66667 

0.44721 35954 99958  0.83333 33333 33333 

1.00000 00000 00000 nq = 5 0.10000 00000 00000 

0.65465 36707 07977  0.54444 44444 44444 

0.00000 00000 00000  0.71111 11111 11111 

1.00000 00000 00000 nq = 6 0.06666 66666 66667 

0.76505 53239 29465  0.37847 49562 97847 

0.28523 15164 80645  0.55485 83770 35486 

(4.10)x(n)=1/2(b−a)n+1/2(b+a) 

so that the non-dimensional limits of integration of n become −1 and +1. The new 
value of y(n) is 
(4.11)y=f(x)=f[1/2(b−a)n+1/2(b+a)]=Φ(n). 

Noting from Eq. 4.10 that dx = 1/2 (b – a) dn, the original integral becomes 



(4.12)I=12(b−a)∫−11Φ(n)dn. 

Gauss showed that the integral in Eq. 4.12 is given by 
∫−11Φ(n)dn=∑i=1nqWiΦ(ni), 

where Wi and ni represent tabulated values of the weight 
functions and abscissae associated with the nq points in the non-dimensional interval 
(−1, 1). The final result is 
(4.13)I=12(b−a)∑i=1nqWiΦ(ni)=∑i=1nqf(x(ni))Wi. 

Gauss also showed that this equation will exactly integrate a polynomial of degree 
(2nq – 1). For a higher number of space dimensions (which range from −1 to +1), 
one obtains a multiple summation. Since Gaussian quadrature data are often 
tabulated in references for the range −1 ≤ n ≤ + 1, it is popular to use the natural 
coordinates in defining element integrals. However, one can convert the tabulated 
data to any convenient system such as the unit coordinate system where 0 ≤ r ≤ 1. 
The latter may be more useful on triangular regions. As an example of Gaussian 
quadratures, consider the following one-dimensional integral: 
 
I=∫12 [22x2x(1+2x2)] dx=∫12F(x)dx. 

If two Gauss points are selected (nq = 2), then the tabulated values from Table 
4.1 give W1 = W2 = 1 and r1 = 0.57735 = − r2 The change of variable gives x(r) = (r + 
3)/2, so that x(r1) = 1.788675 and x(r2) = 1.211325.  
 
Trapezoidal Rule 
 

In Calculus, ―Trapezoidal Rule‖ is one of the important integration rules. The name 
trapezoidal is because when the area under the curve is evaluated, then the total 
area is divided into small trapezoids instead of rectangles. This rule is used for 
approximating the definite integrals where it uses the linear approximations of the 
functions. 

The trapezoidal rule is mostly used in the numerical analysis process. To evaluate 
the definite integrals, we can also use Riemann Sums, where we use small 
rectangles to evaluate the area under the curve. 
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Trapezoidal Rule Definition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Trapezoidal Rule is a rule that evaluates the area under the curves by dividing the 
total area into smaller trapezoids rather than using rectangles. This integration works 
by approximating the region under the graph of a function as a trapezoid, and it 
calculates the area. This rule takes the average of the left and the right sum. 

The Trapezoidal Rule does not give accurate value as Simpson‘s Rule when the 
underlying function is smooth. It is because Simpson‘s Rule uses the quadratic 
approximation instead of linear approximation. Both Simpson‘s Rule and Trapezoidal 
Rule give the approximation value, but Simpson‘s Rule results in even more 
accurate approximation value of the integrals. 

Trapezoidal Rule Formula 

Let f(x) be a continuous function on the interval [a, b]. Now divide the intervals [a, b] 
into n equal subintervals with each of width, 

Δx = (b-a)/n, Such that a = x0 < x1< x2< x3<…..<xn = b 

Then the Trapezoidal Rule formula for area approximating the definite 
integral ∫baf(x)dx is given by: 

∫baf(x)dx≈Tn=△x2[f(x0)+2f(x1)+2f(x2)+….2f(xn−1)+f(xn)] 

Where, xi = a+iΔx 

If n →∞, R.H.S of the expression approaches the definite integral ∫baf(x)dx 

Solved Examples 

Go through the below given Trapezoidal Rule example. 

Example 1: 

Approximate the area under the curve y = f(x) between x =0 and x=8 using 
Trapezoidal Rule with n = 4 subintervals. A function f(x) is given in the table of 
values. 

x 0 2 4 6 8 

f(x) 3 7 11 9 3 

 

Solution: 

The Trapezoidal Rule formula for n= 4 subintervals is given as: 

T4 =(Δx/2)[f(x0)+ 2f(x1)+ 2f(x2)+2f(x3) + f(x4)] 

Here the subinterval width Δx = 2. 

Now, substitute the values from the table, to find the approximate value of the area 
under the curve. 

A≈ T4 =(2/2)[3+ 2(7)+ 2(11)+2(9) + 3] 

https://byjus.com/maths/simpsons-rule/


A≈ T4 = 3 + 14 + 22+ 18+3 = 60 

Therefore, the approximate value of area under the curve using Trapezoidal Rule is 
60. 

Example 2: 

Approximate the area under the curve y = f(x) between x =-4 and x= 2 using 
Trapezoidal Rule with n = 6 subintervals. A function f(x) is given in the table of 
values. 

x -4 -3 -2 -1 0 1 2 

f(x) 0 4 5 3 10 11 2 

 

Solution: 

The Trapezoidal Rule formula for n= 6 subintervals is given as: 

T6 =(Δx/2)[f(x0)+ 2f(x1)+ 2f(x2)+2f(x3) + 2f(x4)+2f(x5)+ f(x6)] 

Here the subinterval width Δx = 1. 

Now, substitute the values from the table, to find the approximate value of the area 
under the curve. 

A≈ T6 =(1/2)[0+ 2(4)+ 2(5)+2(3) + 2(10)+2(11) +2] 

A≈ T6 =(½) [ 8 + 10 + 6+ 20 +22 +2 ] = 68/2 = 34 

Therefore, the approximate value of area under the curve using Trapezoidal Rule is 
34. 

Register with BYJU‘S – The Learning App to read all Calculus related topics and 
download the App to watch interactive videos. 

Frequently Asked Questions – FAQs 

What is Trapezoidal Rule? 

Trapezoidal Rule is an integration rule, in Calculus, that evaluates the area under the 

curves by dividing the total area into smaller trapezoids rather than using rectangles. 

Why the rule is named after trapezoid? 

The name trapezoidal is because when the area under the curve is evaluated, then 

the total area is divided into small trapezoids instead of rectangles. Then we find the 

area of these small trapezoids in a definite interval. 

What is the difference between Trapezoidal rule and Riemann Sums rule? 

In trapezoidal rule, we use trapezoids to approximate the area under the curve 

whereas in Riemann sums we use rectangles to find area under the curve, in case of 



integration. 

Simpson's Rule 
 

Simpson’s rule is one of the numerical methods which is used to evaluate the 
definite integral. Usually, to find the definite integral, we use the fundamental 
theorem of calculus, where we have to apply the antiderivative techniques of 
integration. But sometimes it is difficult to find the antiderivative of an integral, like in 
the case of Scientific Experiments, where the function has to be determined from the 
observed readings. Therefore, the numerical methods are used to approximate the 
integral in such conditions. Other numerical methods used are trapezoidal rule, 
midpoint rule, left or right approximation using Riemann sums. Here, we are going to 
discuss Simpson‘s rule formula, 1/3 rule, 3/8 rule, and examples. 

Table of Contents: 

 Formula 

 Simpson‘s 1/3 Rule 

 1/3 Rule for Integration 

 Simpson‘s 3/8 Rule 

 Error 

 Example 

Simpson’s Rule Formula 

Simpson‘s rule methods are more accurate than the other numerical approximations 
and its formula for n+1 equally spaced subdivision is given by; 

 

Where n is the even number, △x = (b – a)/n and xi = a+i△x 

If we have f(x) = y, which is equally spaced between [a,b] and if a = x0, x1 = x0 + h, 
x2 = x0 + 2h …., xn = x0 + nh, where h is the difference between the terms. Or we 
can say that y0 = f(x0), y1 = f(x1), y2 = f(x2),……,yn = f(xn) are the analogous values of 
y with each value of x. 
 

Simpson’s 1/3 Rule 

Simpson‘s 1/3rd rule is an extension of the trapezoidal rule in which the integrand is 
approximated by a second-order polynomial. Simpson rule can be derived from the 
various way using Newton‘s divided difference polynomial,  Lagrange polynomial, 
and the method of coefficients. Simpson‘s 1/3 rule is defined by: 

∫a
b f(x) dx = h/3[(y0+yn) + 4(y1+y3+y5+….+yn-1)+2(y2+y4+y6+…..+yn-2)] 
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This rule is known as Simpson‘s One-third rule. 
 

Simpson’s ⅓ Rule for Integration 

We can get a quick approximation for definite integrals when we divide a small 
interval[a,b] into two parts. Therefore, after dividing the interval, we get; 

x0=a, x1= a+b, x2 = b 

Hence, we can write the approximation as; 

∫a
b f(x) dx ≈ S2 = h/3[f(x0) + 4f(x1) + f(x2)] 

S2 = h/3[f(a)+4f(a+b/2)+f(b)] 

Where h = (b-a)/2 

This is the simpson‘s ⅓ rule for integration. 
 

Simpson’s 3/8 Rule 

Another method of numerical integration method called ―Simpson‘s 3/8 rule‖. It is 
completely based on the cubic interpolation rather than the quadratic interpolation. 
Simpson‘s 3/8 or three-eight rule is given by: 

∫a
b f(x) dx = 3h/8[(y0+yn)+3(y1+y2+y4+y5+….+yn-1)+2(y3+y6+y9+…..+yn-3)] 

This rule quite more accurate than the standard method, as it uses one more 
functional value. For 3/8 rule, the composite Simpson‘s 3/8 rule also exists which is 
similar to the generalized form. The 3/8 rule is known as Simpson‘s second rule of 
integration. 
 

Simpson’s Rule Error 

Although in Simpson‘s rule method we get a more accurate approximation for 
definite integral, still the error occurs which is defined as when n = 2; 

-(1/90)(b-a/2)5f(4)(ξ) 

Where ξ is some number between a and b. 

Simpson’s Rule Example 

Example: Evaluate ∫0
1exdx, by Simpson’s ⅓ rule. 

Solution: 

Let us divide the range (0,1) into six equal parts by taking h = 1/6. 

When, x0 = 0 then y0 = e0 = 1 

Now, when; 



x1 = x0 + h = ⅙, then y1 = e1/6 = 1.1813 

x2 = x0 + 2h = 2/6 = 1/3 then, y2 = e1/3 = 1.3956 

x3 = x0 + 3h = 3/6 = ½ then y3 = e1/2= 1.6487 

x4 = x0 + 4h = 4/6 ⅔ then y4 = e2/3 = 1.9477 

x5 = x0 + 5h = ⅚ then y5 = e5/6 = 2.3009 

x6 = x0 + 6h = 6/6 = 1 then y6 = e1 = 2.7182 

We know by Simpson‘s ⅓ rule; 

∫a
b f(x) dx = h/3[(y0+yn) + 4(y1+y3+y5+….+yn-1)+2(y2+y4+y6+…..+yn-2)] 

Therefore, 

∫0
1exdx = 1/18[(1+2.718)+4(1.1813+1.6487+2.3009)+2(1.39561+1.9477)] 

= 0.055[3.7182 + 20.52422 + 6.6866] 

= 1.71828 

 

f(
x) 

- algebraic expression in variable 'x' 

x - name; specify the independent variable 
a, 
b 

- algebraic expressions; specify the interval 

o
pt
s 

- equation(s) of the form option=value where option is one 
of boxoptions, functionoptions, iterations, method, outline, output, partition, 
pointoptions, refinement, showarea, showfunction, showpoints, subpartition
, view, or Student plot options; specify output options 
 

  

 Description 
 

 

•  The ApproximateInt(f(x), x = a..b, method = boole, opts) command 
approximates the integral of f(x) from a to b by using Boole's rule. The first two 
arguments (function expression and range) can be replaced by a definite integral. 
 

•  If the independent variable can be uniquely determined from the expression, the 
parameter x need not be included in the calling sequence. 
 

•  Given a partition  of the interval , Boole's rule approximates the integral on each 
subinterval  by integrating the quartic function that interpolates five equally spaced 
points in that subinterval. 
 

•  In the case that the widths of the subintervals are equal, the approximation can be 
written as 

     

   Traditionally, Boole's rule is written as: given N, where N is a positive multiple of 3, 
and given equally spaced points , an approximation to the integral  is 

     

https://www.maplesoft.com/support/help/Maple/view.aspx?path=Student%2fplot_options


•  By default, the interval is divided into  equal-sized subintervals. 

•  For the options opts, see the ApproximateInt help page. 

•  This rule can be applied interactively, through the ApproximateInt Tutor. 

•  This rule is also sometimes known as Bode's Rule due to a misattribution in the 
literature.  The ApproximateInt command will accept 
either method=boole or method=bode. 

 

 Examples 

 

>   

>   

>   

 (1) 

>   

>   

 (2) 

>   

 

 

>   
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To play the following animation in this help page, right-click (Control-click, on 
Macintosh) the plot to display the context menu.  Select Animation > Play. 
>   

 

 

  



 
 

Weddle's Rule 

Let the values of a function  be tabulated at points  equally spaced 

by , so , , .... Then Weddle's rule approximating the 

integral of  is given by the Newton-Cotes-like formula 

 

 

Solution of differential equations: 

 
Picard’s Method 
 
The Picard’s method is an iterative method and is primarily used for approximating 
solutions to differential equations. 
This method of solving a differential equation approximately is one of successive 
approximation; that is, it is an iterative method in which the numerical results become 
more and more accurate, the more times it is used. 

The Picard‘s iterative method gives a sequence of approximations Y1(x), Y2(x), 
…Yk(x) to the solution of differential equations such that the nth approximation is 
obtained from one or more previous approximations. 

The Picard‘s iterative series is relatively easy to implement and the solutions obtained 
through this numerical analysis are generally power series. 
Picard’s iteration method formula: 

 

 

Steps involved: 
 
 Step 1: An approximate value of y (taken, at first, to be a constant) is 

substituted into the right hand side of the differential equation: 
dy/dx= f(x, y). 
 

 Step 2: The equation is then integrated with respect to x giving y in terms of x 
as a second approximation, into which given numerical values are substituted 
and the result rounded off to an assigned number of decimal places or 
significant figures. 
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 Step 3: The iterative process is continued until two consecutive numerical 
solutions are the same when rounded off to the required number of decimal 
places. 
 

Picard’s iteration example: 
 
Given that: 
 

 
 
and that y = 0 when x = 0, determine the value of y when x = 0.3, correct to four 
places of decimals. 
 
Solution: 
 
We may proceed as follows: 

 
where x0 = 0. Hence: 
 

 
 
where y0 = 0. which becomes: 
 

 
 
 First Iteration: 

 
We do not know y in terms of x yet, so we replace y by the constant value y0 in 
the function to be integrated. 
The result of the first iteration is thus given, at x = 0.3, by: 
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 Second Iteration: 
Now, we use: 

 
Therefore, 

  

which gives: 

 

 

 

 

The result of the second iteration is thus given by: 

 

  

at x=0.3. 

 Third Iteration: 
Now we use: 

 
 

Therefore, 



 

 

 which gives: 

 

 

The result of the third iteration is thus given by: 

  

at x = 0.3. 

 Hence, y = 0.0451, correct upto four decimal places, at x = 0.3. 
 
 
 
 

Program for Picard’s iterative method: 
filter_none 

edit 
play_arrow 
brightness_4 
// C program for Picard's iterative method  

   

#include <math.h> 

#include <stdio.h> 

   

// required macros defined below:  

#define Y1(x) (1 + (x) + pow(x, 2) / 2)  

#define Y2(x) (1 + (x) + pow(x, 2) / 2 + pow(x, 3) / 3 + pow(x, 4) / 8)  

#define Y3(x) (1 + (x) + pow(x, 2) / 2 + pow(x, 3) / 3 + pow(x, 4) / 8 + pow(x, 5) / 15 + pow(x, 6) / 48)  

   



intmain()  

{  

    doublestart_value = 0, end_value = 3,  

           allowed_error = 0.4, temp;  

    doubley1[30], y2[30], y3[30];  

    intcount;  

   

    for(temp = start_value, count = 0;  

         temp <= end_value;  

         temp = temp + allowed_error, count++) {  

   

        y1[count] = Y1(temp);  

        y2[count] = Y2(temp);  

        y3[count] = Y3(temp);  

    }  

   

    printf("\nX\n");  

    for(temp = start_value;  

         temp <= end_value;  

         temp = temp + allowed_error) {  

   

        // considering all values  

        // upto 4 decimal places.  

        printf("%.4lf ", temp);  

    }  

   

    printf("\n\nY(1)\n");  

    for(temp = start_value, count = 0;  

         temp <= end_value;  

         temp = temp + allowed_error, count++) {  



   

        printf("%.4lf ", y1[count]);  

    }  

   

    printf("\n\nY(2)\n");  

    for(temp = start_value, count = 0;  

         temp <= end_value;  

         temp = temp + allowed_error, count++) {  

   

        printf("%.4lf ", y2[count]);  

    }  

   

    printf("\n\nY(3)\n");  

    for(temp = start_value, count = 0;  

         temp <= end_value;  

         temp = temp + allowed_error, count++) {  

   

        printf("%.4lf ", y3[count]);  

    }  

    return0;  

}  

Output: 

X 

0.0000 0.4000 0.8000 1.2000 1.6000 2.0000 2.4000 2.8000  

 

Y(1) 

1.0000 1.4800 2.1200 2.9200 3.8800 5.0000 6.2800 7.7200  

 

Y(2) 

1.0000 1.5045 2.3419 3.7552 6.0645 9.6667 15.0352 22.7205  

 



Y(3) 

1.0000 1.5053 2.3692 3.9833 7.1131 13.1333 24.3249 44.2335 

Attention reader! Don‘t stop learning now. Get hold of all the important CS Theory 
concepts for SDE interviews with the CS Theory Course at a student-friendly price and 
become industry ready. 
 
Euler method  
 

In mathematics and computational science, the Euler method (also called forward 
Euler method) is a first-order numerical procedure for solving ordinary differential 
equations (ODEs) with a given initial value. It is the most basic explicit 
method for numerical integration of ordinary differential equations and is the 
simplest Runge–Kutta method. The Euler method is named after Leonhard Euler, 
who treated it in his book Institutionum calculi integralis (published 1768–1870).[1] 

The Euler method is a first-order method, which means that the local error (error per 
step) is proportional to the square of the step size, and the global error (error at a 
given time) is proportional to the step size. The Euler method often serves as the 
basis to construct more complex methods, e.g., predictor–corrector method. 

Euler‘s Method: If we truncate the Taylor series at the first term y(t + ∆t) = y(t)+∆ty0 
(t) + 1 2 ∆t 2 y00(τ ), we can rearrange this and solve for y0 (t) y0 (t) = y(t + ∆t) − y(t) 
∆t + O(∆t). Now we can attempt to solve (1.1) by replacing the derivative with a 
difference: y((n + 1)∆t) ≈ y(n∆t)+∆tf(n∆t, y(n∆t)) Start with y(0) and step forward to 
solve for any time. What‘s good about this? If the O term is something nice looking, 
this quantity decays with ∆t, so if we take ∆t smaller and smaller, this gets closer and 
closer to the real value. What can go wrong? The O term may be ugly. The errors 
can accumulate as I step forward 1 in time. Also, even though this may be a good 
approximation for y0 (t) it may not converge to the right solution. To answer these 
questions, we look at this scheme in depth. Terminology: From now on, we‘ll call yn 
the numerical approximation to the solution y(n∆t); tn = n∆t. Euler‘s method can then 
be written yn+1 = yn + ∆tf(tn, yn) n = 1, ..., N − 1 (1.2) This method assumes that you 
can move from one location to the next using the slope given by the equation (1.1). 
We saw last time that when we do this, our errors will decay linearly with ∆t. We will 
show this again today, but in two steps, so that we can generalize it. The proof 
should look very familiar! Local Truncation Error: To be able to evaluate what we 
expect the order of a method to look like, we look at the LT E(t) = y(t + ∆t) − y(t) ∆t − 
f(t, y(t)), i.e. it is the residue when the exact solution of the ODE (1.1) is plugged into 
the numerical scheme. If yn is close to y(tn) then the LTE will be close to zero. The 
local truncation error represents the terms neglected by truncating the Taylor series. 
This is not the error that we get from the method, (i.e. the difference between the real 
solution and the numerical solution) but will be connected. If I don‘t know y(t), what is 
the use of this definition? (and if I do know y(t), what do I need the method for?!). It 
turns out that even without explicit knowledge of the solution we can still calculate 
the LTE and use it as an estimate and control of the error, by placing certain 
smoothness assumptions on y(t) and using the Taylor Expansions. Clearly, at time 
tn, Euler‘s method has Local Truncation Error: LT E = y(tn + ∆t) − y(tn) ∆t − f(tn, 
y(tn)) = O(∆t), in other words, we can write this y(tn+1) = y(tn)+∆tf(tn, y(tn)) + ∆tLT E. 
Of course, the method is yn+1 = y(tn)+∆tf(tn, yn). Subtract these two, |y(tn+1) − 
yn+1| = |y(tn) − yn + ∆t(f(tn, y(tn)) − f(tn, yn)) + ∆tLT E| ≤ |y(tn) − yn| + ∆t|f(tn, y(tn)) − 
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f(tn, yn)| + ∆t|LT E| ≤ |y(tn) − yn| + ∆tL|y(tn) − yn| + ∆t|LT E| . Because f is Lipschitz 
continuous, | f(tn, y(tn)) − f(tn, yn) y(tn) − yn | ≤ L. 2 And so, if we let the Global Error 
be en = |y(tn) − yn|, then we can bound the growth of this error: en+1 ≤ en(1 + ∆tL) + 
LT E∆t. How does this help us bound the method? Lemma: If zi+1 ≤ zi(1 + a∆t) + b 
Then zi ≤ eai∆t (z0 + b a∆t) Proof: zi+1 ≤ zi (1 + a∆t) + b ≤ (zi−1(1 + a∆t) + b)(1 + 
a∆t) + b · · · ≤ z0(1 + a∆t) i+1 + b(1 + (1 + a∆t)... + (1 + a∆t) i ) = z0(1 + a∆t) i+1 + b 
(1 + a∆t)i+1 − 1 1 + a∆t − 1 ≤ z0(1 + a∆t) i+1 + b a∆t (1 + a∆t) i+1 ≤ (1 + a∆t) i+1 z0 + 
b a∆t ! ≤ ea∆t(i+1) z0 + b a∆t ! so zi ≤ eai∆t (z0 + b a∆t ) Applying this lemma to the 
global error, we have |en| ≤ eLn∆t (|e0| + M 2L∆t) Now, if n∆t ≤ T then |en| ≤ eLT 
(|e0| + M 2L∆t) and since |e0| = 0 we have: |en| ≤ eLT ( M 2L ∆t). Compare this with 
the local error: LT E ≤ 1 2M∆t we see that the global error has the same order as the 
local error with a different coefficient in the estimates. They are related by the 
Lipschitz constant L and the final time T. The Order of a scheme r, is defined by |en| 
= O(∆t r). The higher the order of the scheme, the faster the error decays. Comment: 
The important thing to understand is that the Local Truncation Error is not always an 
indicator of what the global error will do. Schemes that have the same order of LTE 
and global error are good schemes. We need to define what makes the method have 
the property that the global error will be of same order as the LTE. 

Taylor's Series method 

Consider the one dimensional initial value problem 

y' = f(x, y),   y(x0) = y0 

where  

f is a function of two variables x and y and (x0 , y0) is a known point on the solution 

curve. 

If the existence of all higher order partial derivatives is assumed for y at x = x0, then 
by Taylor series the value of y at any neibhouring point x+h can be written as  

y(x0+h) = y(x0) + h y'(x0) + h2 /2 y''(x0) + h3/3! y'''(x0) +  .  .  .  .  .  . 

where ' represents the derivative with respect to x.  Since at x0, y0 is 
known,  y' at x0 can be found by computing f(x0,y0).  Similarly higher derivatives 
of y at x0 also can be computed by making use of the relation  y'  = f(x,y)  

      y''  = fx + fyy' 
      y''' = fxx + 2fxyy' + fyy y'2 + fyy'' 
  

and so on.   Then  

y(x0+h) = y(x0) + h f + h2  ( fx + fyy' ) / 2! + h3 ( fxx + 2fxyy' + fyy y'2 + fyy'' ) / 3! + 
o(h4) 

Hence the value of  y  at any neighboring point  x0+ h  can be obtained by summing  
the above infinite series.   However,  in any practical computation, the summation 
has to be terminated after some finite number of terms.  If the series has been 
terminated after the pthderivative term then the approximated formula is called the 



Taylor series approximation to y of order p and the error is of order p+1.  The same 
can be repeated to obtain y at other points of x in the interval [x0, xn] in a marching 
process.  
  
  

Algorithm 

Specify  x0, xn, y0, h 
               ( (x0, y0) Initial point,  
                                   xn point where the solution is required  
                  h  the step length to be used in the marching process ) 
Repeat 
    compute f(xi, yi),  f'(xi, yi),  f''(xi, yi)  . . . 
    compute y(xi+h) = y(xi) + h f(xi, yi) + h2 /2 f'(xi, yi) + h3/3! f''(xi, yi) + . . . 
    xi = xi + h 
until xi = xn 

Error in the approximation : 

The Taylor series method of order p has the property that the final global error is of 
order o(hp+1); hence p can be chosen as large as necessary to make the error is as 
small as desired.  If the order p is fixed, it is theoretically possible to a priori 
determine the size of h so that the final global error will be as small as desired.  
Since 
  

Ep    =  
1 

  hp+1 yp+1   0 <  
(p+1)! 

Making use of finite differences, the p+1th derivative of y at  can be 
approximated as 
  
  

Ep =  
hp (yp - yp(x)) 

(p+1)!  

However, in practice one usually computes two sets of approximations using step 
sizes h and h/2 and compares the solutions 
For p = 4, E4 = c * h4 and the same with step size h/2,   E4 = c * (h/2)4, that is if the 
step size is halved the error is reduced by an order of 1/16. 
  
  



Worked out problems 

Example 1 

Solve the initial value problem y' = -2xy2,  y(0) = 1 for y at 

x = 1 with step length 0.2 using Taylor series method of 

order four. 

Solution 

Example 2 

Using Taylor series method of order four solve the initial 

value problem y' = (x - y)/2, on [0, 3] with y(0) = 1.  

Compare solutions for h = 1, 1/2, 1/4 and 1/8. 

Solution 

Example 3 
Using Taylor series method, find y(0.1) for y' = x - y2 ,  y(0) 

= 1 correct upto four decimal places. 
Solution 

Example 4 Find y at x = 1.1 and 1.2 by solving y' = x2 + y2 ,  y(1) = 2.3 Solution 

Taylor Series Methods: To derive these methods we start with a Taylor Expansion: 
y(t + ∆t) ≈ y(t)+∆ty0 (t) + 1 2 ∆t 2 y00(t) + ... + 1 r! y(r) (t)∆t r . Let‘s say we want to 
truncate this at the second derivative and base a method on that. The scheme is, 
then: yn+1 = yn + fn∆t + f0 tn 2 ∆t 2 . The Taylor series method can be written as 
yn+1 = yn + ∆tF(tn, yn, ∆t) where F = f + 1 2∆tf0 . If we take the LTE for this scheme, 
we get (as expected) LT E(t) = y(tn + ∆t) − y(tn) ∆t − f(tn, y(tn)) − 1 2 ∆tf0 (tn, y(tn)) = 
O(∆t 2 ). Of course, we designed this method to give us this order, so it shouldn‘t be 
a surprise! So the LTE is reasonable, but what about the global error? Just as in the 
Euler Forward case, we can show that the global error is of the same order as the 
LTE. How do we do this? We have two facts, y(tn+1) = y(tn)+∆tF(tn, y(tn), ∆t), and 
yn+1 = yn + ∆tF(tn, yn, ∆t) where F = f + 1 2∆tf0 . Now we subtract these two 
|y(tn+1) − yn+1| = |y(tn) − yn + ∆t(F(tn, y(tn)) − F(tn, yn)) + ∆tLT E| ≤ |y(tn) − yn| + 
∆t|F(tn, y(tn)) − F(tn, yn)| + ∆t|LT E| . Now, if F is Lipschitz continuous, we can say 
en+1 ≤ (1 + ∆tL)en + ∆t|LT E|. Of course, this is the same proof as for Euler‘s 
method, except that now we are looking at F, not f, and the LT E is of higher order. 
We can do this no matter which Taylor series method we use, how many terms we 
go forward before we truncate. Advantages and Disadvantages of the Taylor Series 
Method: advantages a) One step, explicit b) can be high order c) easy to show that 
global error is the same order as LTE disadvantages Needs the explicit form of 
derivatives of f. 4 Runge-Kutta Methods To avoid the disadvantage of the Taylor 
series method, we can use Runge-Kutta methods. These are still one step methods, 
but they depend on estimates of the solution at different points. They are written out 
so that they don‘t look messy: Second Order Runge-Kutta Methods: k1 = ∆tf(ti, yi) k2 
= ∆tf(ti + α∆t, yi + βk1) yi+1 = yi + ak1 + bk2 let‘s see how we can chose the 
parameters a,b, α, β so that this method has the highest order LT E possible. Take 
the Taylor expansions to express the LTE: k1(t)=∆tf(t, y(t)) k2(t)=∆tf(t + α∆t, y + 
βk1(t) = ∆t  f(t, y(t) + ft(t, y(t))α∆t + fy(t, y(t))βk1(t) + O(∆t 2 )  LT E(t) = y(t + ∆t) − y(t) 
∆t − a ∆t f(t, y(t))∆t − b ∆t (ft(t, y(t))α∆t + fy(t, y(t)βk1(t) + f(t, y(t)) ∆t + O(∆t 2 ) = y(t + 
∆t) − y(t) ∆t − af(t, y(t)) − bf(t, y(t)) − bft(t, y(t))α − bfy(t, y(t)βf(t, y(t)) + O(∆t 2 ) = y0 (t) 
+ 1 2 ∆ty00(t) − (a + b)f(t, y(t)) − ∆t(bαft(t, y(t)) + bβf(t, y(t))fy(t, y(t)) + O(∆t 2 ) = (1 − 
a − b)f + (1 2 − bα)∆tft + (1 2 − bβ)∆tfyf + O(∆t 2 ) So we want a = 1 − b, α = β = 1 2b 
. Fourth Order Runge-Kutta Methods: k1 = ∆tf(ti, yi) (1.3) k2 = ∆tf(ti + 1 2 ∆t, yi + 1 2 
k1) (1.4) k3 = ∆tf(ti + 1 2 ∆t, yi + 1 2 k2) (1.5) k4 = ∆tf(ti + ∆t, yi + k3) (1.6) yi+1 = yi + 
1 6 (k1 + k2 + k3 + k4) (1.7) The second order method requires 2 evaluations of f at 
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every timestep, the fourth order method requires 4 evaluations of f at every timestep. 
In general: For an rth order RungeKutta method we need S(r) evaluations of f for 

7 5 Practically speaking, people stop at r = 5. Advantages of Runge-Kutta Methods 
1. One step method – global error is of the same order as local error. 2. Don‘t need 
to know derivatives of f. 3. Easy for ‖Automatic Error Control‖. Automatic Error 
Control Uniform grid spacing – in this case, time steps – are good for some cases 
but not always. Sometimes we deal with problems where varying the gridsize makes 
sense. How do you know when to change the stepsize? If we have an rth order 
scheme and and r + 1th order scheme, we can take the difference between these 
two to be the error in the scheme, and make the stepsize smaller if we prefer a 
smaller error, or larger if we can tolerate a larger error. For Automatic error control yo 
are computing a ‖useless‖ (r+1)th order shceme . . . what a waste! But with Runge 
Kutta we can take a fifth order method and a fourth order method, using the same 
ks. only a little extra work at each step 

Runge-Kutta Method : 

Runge-Kutta method here after called as RK method is the generalization of the 
concept used in Modified Euler's method. 

In Modified Eulers method the slope of the solution curve has been approximated 
with the slopes of the curve at the end points of the each sub interval in computing 
the solution.  The natural generalization of this concept is computing the slope by 
taking a weighted average of the slopes taken at more number of points in each sub 
interval.  However, the implementation of the scheme differes from Modified Eulers 
method so that the developed algorithm is explicit in nature.  The final form of the 
scheme is of the form 

yi+1  =  yi +  (weighted average of the slopes)             for i = 0, 1, 2 . . . 
where h is the step length and yi and yi+1 are the values 
of y at xi and xi+1 respectively. 

In genaral, the slope is computed at various points xs in each sub interval [xi, 
xi+1] and multiplied them with the step length h and then weighted average of it is 
then added to yi to compute yi+1.  Thus the RK method with v slopes called as v-
stage RKmethod can be written as 

K1  =  h f(xi, yi) 
K2  =  h f(xi + c2h, yi + a21K1) 
K3  =  h f(xi + c3h, yi + a31K1+ a32K2) 
. . . 
. . . 
. . . 

Kv  =  h f(xi + cvh, yi + av1K1+ av2K2 + . . . +avv-1Kv-1) 
and 

yi+1  =  yi +  (W1 K1 + W2 K2 + . . . + Wv Kv )             for i = 0, 1, 2 . . . 



To determine the parameters c's, a's and W's in the above equation, yi+1 defined in 
the scheme is  expanded interms of steplengh h and the resultant equation is then 
compared with Taylor series expansion of the solution of the differential equation 
upto a certain number of terms say p.  Then the v-stage RKmethod will be of 
order p or is an pth order RK method.  Here for any v>4 the maximum possible 
order p of the R Kmethod is always less than v.  However, for any v lessthan or 
equal to 4, it is possible derive an RK method of order p = v.  Now, consider the case 
v = 2 to derive the 2-stage RK method.  For this 

K1  =  h f(xi, yi) 
K2  =  h f(xi + c2h, yi + a21K1) 
yi+1  =  yi +  ( W1 K1 + W2 K2 )                                             for i = 0, 1, 2 . . . 

Now by Taylor series expansion 

y(xi+1) = y(xi) + h y'(xi) + h2 y''(xi)/2! + h3 y'''(xi)/3! + o(h4) 
            = y(xi) + h f + h2  ( fx + fyf ) / 2! + h3( fxx + 2fxyf + fyy f

2 + fy( fx + fyf )) / 3! + 
o(h4) 

Also 

K1  =  h fi 
K2  =  h f(xi + c2h, yi + a21K1) 
      =  h( fi + c2h fx +  a21K1fy + ( c2h)2 fxx /2! + (a21K1)

2 fyy /2! + c2h a21K1 fxy + o(h4) ) 
    =  h( fi + c2h fx +  a21h fi fy + ( c2h)2 fxx /2! + (a21h fi)

2 fyy /2! + c2h a21h 
fi fxy + o(h4) ) 
yi+1 = yi + (W1+W2) h fi + h2(W2c2fx + W2a21f fy) + h3 W2(c2

2a21f fxy + a2
21f

2 fyy)/2 
+ o(h4) 

Now by comparing the equal powers of h inyi+1and y(xi+1) we get 

W1 + W2 = 1                 c2W2 = 1/2       and            a21W2 =  1/2 

The solution of this system is 

a21 =  c2,       W2 = 1/(2c2)        and        W1 = 1  -  1/(2c2) 

where c2 is any arbitrary constant not equal to zero.  For these values of  a21, W2 , 
W1, since 2-stage RK method compares with Taylor series upto h2for any value 
of c2 the 2-stage RK method is of order two and hence this scheme is denoted in 
many text books as a second order RK method.  Now, to give some numerical 
values to a21, W2 , W1 first the valuec2 of  has to be fixed.  Generally the value of c2 is 
fixed such that the values of a21, W2 , W1 are integers or some real numbers which 
easy to remember.  Two of such cases are c2 = 1/2 and c2=1. 

Case (i):  c2 = 1/2     a21= 1/2, W2 = 1, W1 = 0.  The corresopnding 2-stage 
(second order) RK method is 



K1  =  h f(xi, yi) 
K2  =  h f(xi + h/2, yi + K1 /2 ) 
yi+1  =  yi +  (  K2 )                                             for i = 0, 1, 2 . . . 

or equivalently 

yi+1  =  yi +  h f(xi + h/2, yi + h f(xi, yi) /2)       for i = 0, 1, 2 . . . 

Which is knothing but Eulers method with step length h = 1/2. 

Case (ii):  c2 = 1     a21= 2, W2 =  W1 = 1/2.  The corresopnding 2-stage 
(second order) RK method is 

K1  =  h f(xi, yi) 
K2  =  h f(xi + h, yi + K1 ) 
yi+1  =  yi +  (  K1 + K2 )/2                                             for i = 0, 1, 2 . . . 
or equivalently 

yi+1  =  yi + .5 h (f(xi, yi) + f(xi + h, yi + h f(xi, yi) ))       for i = 0, 1, 2 . . . 

Which is knothing but the Modified Eulers method. 

Following the same procedure one can develope the higher order RK methods by 
giving various values to v and comparing the obtained yi+1 with the same obtained by 
Taylor series method.  Classical RK methods of order three and four are 
  

1 
 RK method of order three 

(v = 3) 

   K1  =  h f(xi, yi) 

   K2  =  h f(xi + h/2, yi + K1 /2) 

   K3  =  h f(xi + h, yi  - K1  + 2K2 ) 

   yi+1  =  yi +  (  K1 + 4K2 + K3 )/6  

2 
RK method of order three 

(v = 4) 

   K1  =  h f(xi, yi) 

   K2  =  h f(xi + h/2, yi + K1 /2) 

   K3  =  h f(xi + h/2, yi + K2 /2) 

   K4  =  h f(xi + h, yi  + K3 ) 

   yi+1  =  yi +  (  K1 + 2K2 + 2K3 + K4 )/6  

 

  

Worked out problems 

Example 1 

Find   y(1.0)  using RK method of order four by solving the 

IVP  y' = -2xy2,  y(0) = 1 with step length 0.2. Also compre 

the solution obtained with RK methods of order three and 

two. 

Solution 

Example 2 Find  y  in  [0,3] by solving the initial value problem y' = (x Solution 
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- y)/2,  y(0) = 1 using RK method of order four with  h = 1/2 

and 1/4. 

Example 3 
Using RK method of order four find y(0.1) for y' = x - y2,  

y(0) = 1. 
Solution 

Example 4 
Using RK method of order four find y at x = 1.1 and 1.2 by 

solving y' = x2 + y2 ,  y(1) = 2.3 
Solution 

 

Runge-Kutta Methods 

 

In the forward Euler method, we used the information on the slope or the derivative 

of y at the given time step to extrapolate the solution to the next time-step. The LTE 

for the method is O(h2), resulting in a first order numerical technique. Runge-Kutta 

methods are a class of methods which judiciously uses the information on the 'slope' 

at more than one point to extrapolate the solution to the future time step. Let's 

discuss first the derivation of the second order RK method where the LTE is O(h3). 

Given the IVP of Eq. 6, and a time step h, and the solution yn at the nth time step, 
let's say that we wish to compute yn+1 in the following fashion: 

    k1 = hf(yn,tn)   

    
 

  

    yn+1 = yn + ak1 + bk2, (12) 

 

 

where the constants , , a and b have to be evaluated so that the resulting 

method has a LTE O(h3). Note that if k2=0 and a=1, then Eq. 13 reduces to the 

forward Euler method. 

Now, let's write down the Taylor series expansion of y in the neighborhood 
of tn correct to the h2 term i.e., 

 

(13) 
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However, we know from the IVP (Eq. 6) that dy/dt = f(y,t) so that 

 

 

(14) 

 

 

So from the above analysis, i.e., Eqs. 14 and 15, we get 

 

 

(15) 

 

 

However, the term k2 in the proposed RK method of Eq. 13 can be expanded correct 

to O(h3) as 

    
 

  

    

 

(16) 

 

 

Now, substituting for k2 from Eq. 17 in Eq. 13, we get 

 

 

(17) 

 

 

Comparing the terms with identical coefficients in Eqs. 16 and 18 gives us the 
following system of equations to determine the constants: 

    a+b=1   

    

 

  



    

 

(18) 

 

 

There are infinitely many choices of a, b,  and  which satisfy Eq. 19, we can 

choose for instance  and a=b=1/2. With this choice, we have the 

classical second order accurate Runge-Kutta method (RK2) which is summarized as 

follows. 

    k1 = hf(yn,tn)   

    k2 = hf(yn+k1, tn + h)   

    
 

(19

) 

 

 

In a similar fashion Runge-Kutta methods of higher order can be developed. One of 
the most widely used methods for the solution of IVPs is the fourth order Runge-
Kutta (RK4) technique. The LTE of this method is order h5. The method is given 
below. 

    k1 = hf(yn,tn)   

    k2 = hf(yn+k1/2, tn + h/2)   

    
 

  

    k4 = h(yn+k3, tn + h)   

    yn+1 = yn + (k1 + 2k2 + 2k3 + k4)/6. 
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For a given differential equation  with initial 

condition  
find the approximate solution using Predictor-Corrector method. 

Predictor-Corrector Method : 
 
The predictor-corrector method is also known as Modified-Euler method. 
In the Euler method, the tangent is drawn at a point and slope is calculated for a given 
step size. Thus this method works best with linear functions, but for other cases, there 

https://en.wikipedia.org/wiki/Euler_method


remains a truncation error. To solve this problem the Modified Euler method is 
introduced. In this method instead of a point, the arithmetic average of the slope over 
an interval  is used. 
Thus in the Predictor-Corrector method for each step the predicted value of is 
calculated first using Euler‘s method and then the slopes at the points  and  is 
calculated and the arithmetic average of these slopes are added to  to calculate the 

corrected value of . 

As, in this method, the average slope is used, so the error is reduced significantly. 
Also, we can repeat the process of correction for convergence. Thus at every step, we 
are reducing the error thus by improving the value of y. 

 

 

Examples: 

Input : eq = , y(0) = 0.5, step size(h) = 0.2 
To find: y(1) 
Output: y(1) = 2.18147 
Explanation: 
 
The final value of y at x = 1 is y=2.18147 
Implementation: Here we are considering the differential 

equation:  

 C++ 

 Java 

 Python3 

 C# 

 PHP 
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// C++ code for solving the differential equation  

// using Predictor-Corrector or Modified-Euler method  

// with the given conditions, y(0) = 0.5, step size(h) = 0.2  

// to find y(1)  

   

#include <bits/stdc++.h> 

usingnamespacestd;  

   



// consider the differential equation  

// for a given x and y, return v  

doublef(doublex, doubley)  

{  

    doublev = y - 2 * x * x + 1;  

    returnv;  

}  

   

// predicts the next value for a given (x, y)  

// and step size h using Euler method  

doublepredict(doublex, doubley, doubleh)  

{  

    // value of next y(predicted) is returned  

    doubley1p = y + h * f(x, y);  

    returny1p;  

}  

   

// corrects the predicted value  

// using Modified Euler method  

doublecorrect(doublex, doubley,  

               doublex1, doubley1,  

               doubleh)  

{  

    // (x, y) are of previous step  

    // and x1 is the increased x for next step  

    // and y1 is predicted y for next step  

    doublee = 0.00001;  

    doubley1c = y1;  

   

    do{  



        y1 = y1c;  

        y1c = y + 0.5 * h * (f(x, y) + f(x1, y1));  

    } while(fabs(y1c - y1) > e);  

   

    // every iteration is correcting the value  

    // of y using average slope  

    returny1c;  

}  

   

voidprintFinalValues(doublex, doublexn,  

                      doubley, doubleh)  

{  

   

    while(x < xn) {  

        doublex1 = x + h;  

        doubley1p = predict(x, y, h);  

        doubley1c = correct(x, y, x1, y1p, h);  

        x = x1;  

        y = y1c;  

    }  

   

    // at every iteration first the value  

    // of for next step is first predicted  

    // and then corrected.  

    cout << "The final value of y at x = " 

         << x << " is : "<< y << endl;  

}  

   

intmain()  

{  



    // here x and y are the initial  

    // given condition, so x=0 and y=0.5  

    doublex = 0, y = 0.5;  

   

    // final value of x for which y is needed  

    doublexn = 1;  

   

    // step size  

    doubleh = 0.2;  

   

    printFinalValues(x, xn, y, h);  

   

    return0;  

}  

AUTOMATIC ERROR MONITORING 

Exception/Error Monitoring is a process to monitor the log files generated by the 
applications, events, and services to identify the errors or exceptions occurred in 
the applications running. Exception/Error Monitoring helps in identifying the 
errors by scanning the log files for specific keyword/text pattern and generate 
alerts to notify the user. 

Serious errors like OutOfMemoryError get logged into server's log files which 
makes server not perform its usual operations in desired manner even though it 
continues to run. The Exception/Error monitor will watch your server's log files 
and alert you as soon as it finds pre-configured search conditions. 

This tutorial provides a brief introduction on monitoring Log files using 
AgentlessMonitor. This tutorial assumes that you have successfully installed 
AgentlessMonitor. 

 

 

Configuring Agentless Monitor to monitor Exception/Error in log files 

Following steps will explain how you can configure AppPerfect Agentless Monitor 
for Exception/Error Monitoring : 

o Once you are logged into the Monitor Server you can see the Web-UI from 
which you can access all the features of the Monitor Server. Click the 
Monitors link from the left sidebar. This will take you to Monitors tab. Click on 
Add button to Add a New Exception/Error Monitor. 
 



o Next Step is to define the Exception/Error Monitor. Provide the IP Address or 
Host Name of the system whose log files need to be monitored. 
 

o Select the monitor type as Exception/Error Monitor to monitor Logs for errors 
or exceptions. 
 

o Specify a meaningful identifier for the monitor which will help identify the 
monitor in future. AppPerfect also supports legacy agent-based architecture. 
In case you need to use agent-based monitoring, AppPerfect can provide 
agent for monitoring remote machine, in which case it requires the agent to 
be deployed on remote machine running at a specific port. 
 

o Specify the Data Fetch Interval which represents the time interval for which 
application should wait before fetching the monitoring data from the device. 
Monitoring Data will be fetched after every specified fetch interval. The 
smaller the time interval, the more granular the data. However, smaller time 
intervals also result in a much larger data set. 
 

o You can specify if the monitor should be Active as soon as its added or 
should it be in suspended state. You can also specify if all the attributes 
should be monitored or only some predefined attributes should be monitored. 
 

o Next Option is to provide server specific configuration settings. Provide the 
log file(s) you want to monitor, message pattern and user credentials. You 
can add some keywords to the whitelist, so the monitor will ignore those 
patterns while monitoring. Once you are done providing the server settings, 
click on Validate Connection button to confirm that the specified log file(s) on 
the server is accessible. 
 
 

o Next Step is to Select the Attributes to monitor. Exception/Error Monitoring 
allows you to monitor the parameters such as lines read, exception summary, 
match count etc. Select the parameters you need to monitor from the list of 
attributes shown. 
 
 

o Next step shows the Attribute details of all the selected attributes in the 
previous step. You can customize the display labels for each of the attributes 
here. You can change the label for time from milliseconds to microseconds. 
 
 

o Next step shows the Attribute Data conversion where you can convert the 
attribute value to required unit. You can configure the operation which should 
be performed on the attribute value to create the final output value. 
 
 

o Next step shows the Defining Rules view. This view will provide a list of all 
numeric attributes. You can select the attributes for which you want to add a 
rule. A rule is defined as a conditional or threshold value which when 
exceeds, a notification would be sent. In a typical workflow the monitors 



extract data from the monitored device and send it to the rules engine. The 
rules engine evaluates the data to ensure no rule is violated and then sends it 
to the view manager. However, if a rule is violated, a message is immediately 
sent to the notification server to alert the user about the rule violation.Rules 
can be defined at a later stage as well. For details on how you can add/edit 
rules for the monitor, please see the Rules chapter. 
 

o Next step shows the Security & Notification settings. When a rule is violated a 
notification is sent out to all the concerned users that a particular event has 
occurred and needs to be dealt with. This process is called notification. 
AppPerfect provides five modes of notification. They are Email notification, 
SMS notification, Custom notification, Log notification, Database notification, 
SNMP Trap notification. For details on each of the supported notification , 
please see the Notification chapter. In this view you can configure the type of 
notification which should be sent on Rule violation, Users/Groups to whom 
notification should be sent and also the subject and details on the notification 
message. 

Click on finish button. We are done adding the monitor for Exception/Error 
Monitoring. Once Exception/Error Monitor is added, you will get a message 
Exception/Error Monitor added successfully. Now go to Status. Expand the data 
for IP provided in IP Address while creating the monitor. Expand Exception/Error 
monitor. Click on + icon against the charts that you want to monitor in your 
Dashboard. 
 

Stabilityof solution 

In mathematics, condition in which a slight disturbance in a system does not produce 
too disrupting an effect on that system. In terms of the solution of a differential 
equation, a function f(x) is said to be stable if any other solution of the equation that 
starts out sufficiently close to it when x = 0 remains close to it for succeeding values 
of x. If the difference between the solutions approaches zero as x increases, the 
solution is called asymptotically stable. If a solution does not have either of these 
properties, it is called unstable. 

For example, the solution y = ce-x of the equation y′ = -y is asymptotically stable, 
because the difference of any two solutions c1e

-x and c2e
-x is (c1 - c2)e

-x, which 
always approaches zero as x increases. The solution y = cex of the equation y′ = y, 
on the other hand, is unstable, because the difference of any two solutions is (c1 -
 c2)e

x, which increases without bound as x increases. A given equation can have 
both stable and unstable solutions. For example, the equation y′ = -y(1 - y)(2 - y) has 
the solutions y = 1, y = 0, y = 2, y = 1 + (1 + c2e-2x)-1/

2, and y = 1 - (1 + c2e-2x)-

1/
2 (see Graph). All these solutions except y = 1 are stable because they all approach 

the lines y = 0 or y = 2 as x increases for any values of c that allow the solutions to 
start out close together. The solution y = 1 is unstable because the difference 
between this solution and other nearby ones is (1 + c2e-2x)-1/

2, which increases to 1 
as x increases, no matter how close it is initially to the solution y = 1. 
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Stability of solutions is important in physical problems because if slight deviations 
from the mathematical model caused by unavoidable errors in measurement do not 
have a correspondingly slight effect on the solution, the mathematical equations 
describing the problem will not accurately predict the future outcome. Thus, one of 
the difficulties in predicting population growth is the fact that it is governed by the 
equation y = axce, which is an unstable solution of the equation y′ = ay. Relatively 
slight errors in the initial population count, c, or in the breeding rate, a, will cause 
quite large errors in prediction, even if no disturbing influences 
occur.In mathematics, stability theory addresses the stability of solutions 
of differential equations and of trajectories of dynamical systems under small 
perturbations of initial conditions. The heat equation, for example, is a stable partial 
differential equation because small perturbations of initial data lead to small 
variations in temperature at a later time as a result of the maximum principle. In 
partial differential equations one may measure the distances between functions 
using Lp norms or the sup norm, while in differential geometry one may measure the 
distance between spaces using the Gromov–Hausdorff distance. 

In dynamical systems, an orbit is called Lyapunov stable if the forward orbit of any 
point is in a small enough neighborhood or it stays in a small (but perhaps, larger) 
neighborhood. Various criteria have been developed to prove stability or instability of 
an orbit. Under favorable circumstances, the question may be reduced to a well-
studied problem involving eigenvalues of matrices. A more general method 
involves Lyapunov functions. In practice, any one of a number of different stability 
criteria are applied. 

 

The equilibrium points are determined as follows: 

x˙00=f(x),=f(xe),=−x3⟹xe=0. 

The equilibrium point xe=0 is stable or attractive because the two black arrows are 

heading toward the equilibrium point (i.e. the origin). The direction of the arrows are 

determined based on the positivity or negativity of x˙. If the differential equation is 
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positive as the case with this example when x<0, the trajectory moves to the right 

and vise versa. See the below picture, 

 

In order to show whether the equilibrium point is asymptotically stable, the 
equilibrium point must be stable and convergent. We've just shown that the 
equilibrium point is stable. The equilibrium point is convergent if the trajectory goes 
to zero as time goes to infinity. The analytical solution for the ode is, assuming the 
initial time is zero (i.e. t0=0): 

x(t)=±x2(0)1+2x2(0)t−−−−−−−−−−√ 

As time goes to infinity, the trajectory indeed goes to zero, therefore, the system is 
asymptotically stable (i.e. it is stable and convergent). The system is also globally 
asymptotically stable. Globally because starting from any initial value, the trajectory 
goes to zero as time goes to infinity. Sometimes not all initial values make the 
trajectory goes to zero as time goes to infinity that is the trajectory will blow with 
some initial values. If this is the case, the stability of the system 
is locally asymptotically stable. 
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